CData Connect AI を使用して Dataiku と Amazon Athena のデータ を統合

Yazhini G
Yazhini G
Technical Marketing Engineer
CData Connect AI のリモート MCP サーバーを活用して、Dataiku エージェントからリアルタイムのAmazon Athena のデータにセキュアにクエリ・操作できるようにします。

Dataiku は、チームがガバナンスされた環境内で機械学習や生成 AI プロジェクトを設計、デプロイ、管理できるコラボレーティブなデータサイエンス・AI プラットフォームです。エージェントと GenAI フレームワークにより、カスタムワークフローとモデルオーケストレーションを通じてデータを分析、生成、操作できるインテリジェントエージェントを構築できます。

Dataiku を CData Connect AI の組み込み MCP(Model Context Protocol)サーバーと統合することで、これらのエージェントはリアルタイムのAmazon Athena のデータにセキュアにアクセスできるようになります。この統合により、Dataiku のエージェント実行環境と CData のガバナンスされたエンタープライズ接続レイヤーが橋渡しされ、すべてのクエリや指示が手動エクスポートやステージングなしで、承認されたデータソースに対して安全に実行されます。

この記事では、Connect AI での Amazon Athena 接続の設定、MCP サポートを含む Dataiku の Python コード環境の準備、そして Dataiku 内から直接リアルタイムのAmazon Athena のデータにクエリ・操作できるエージェントの作成方法を説明します。

Amazon Athena データ連携について

CData は、Amazon Athena のライブデータにアクセスし、統合するための最も簡単な方法を提供します。お客様は CData の接続機能を以下の目的で使用しています:

  • IAM 認証情報、アクセスキー、インスタンスプロファイルなど、さまざまな方法で安全に認証できます。多様なセキュリティニーズに対応し、認証プロセスを簡素化します。
  • 詳細なエラーメッセージにより、セットアップを効率化し、問題を迅速に解決できます。
  • サーバーサイドでのクエリ実行により、パフォーマンスを向上させ、クライアントリソースへの負荷を最小限に抑えます。

ユーザーは、Tableau、Power BI、Excel などの分析ツールと Athena を統合し、お気に入りのツールから詳細な分析を行うことができます。

CData を使用した Amazon Athena のユニークなユースケースについては、ブログ記事をご覧ください:https://jp.cdata.com/blog/amazon-athena-use-cases


はじめに


ステップ 1:Dataiku 用の Amazon Athena 接続を設定

Dataiku から Amazon Athena への接続は、CData Connect AI のリモート MCP サーバーによって実現されます。Dataiku からAmazon Athena のデータを操作するには、まず CData Connect AI で Amazon Athena 接続を作成・設定します。

  1. Connect AI にログインし、Sources をクリック、次に Add Connection をクリック
  2. Add Connection パネルから「Amazon Athena」を選択
  3. Amazon Athena に接続するために必要な認証プロパティを入力します。

    Amazon Athena 接続プロパティの取得・設定方法

    それでは、早速Athena に接続していきましょう。

    データに接続するには、以下の接続パラメータを指定します。

    • DataSource:接続するAmazon Athena データソース。
    • Database:接続するAmazon Athena データベース。
    • AWSRegion:Amazon Athena データがホストされているリージョン。
    • S3StagingDirectory:クエリの結果を保存するS3 フォルダ。

    Database またはDataSource が設定されていない場合、CData 製品はAmazon Athena の利用可能なデータソースからすべてのデータベースのリスト化を試みます。そのため、両方のプロパティを設定することでCData 製品のパフォーマンスが向上します。

    Amazon Athena の認証設定

    CData 製品は幅広い認証オプションに対応しています。詳しくはヘルプドキュメントの「はじめに」を参照してみてください。

    AWS キーを取得

    IAM ユーザーの認証情報を取得するには、以下のステップお試しください。

    1. IAM コンソールにサインインします。
    2. ナビゲーションペインでユーザーを選択します。
    3. ユーザーのアクセスキーを作成または管理するには、ユーザーを選択してからセキュリティ認証情報タブに移動します。

    AWS ルートアカウントの資格情報を取得するには、以下のステップをお試しください。

    1. ルートアカウントの認証情報を使用してAWS 管理コンソールにサインインします。
    2. アカウント名または番号を選択します。
    3. 表示されたメニューでMy Security Credentials を選択します。
    4. ルートアカウントのアクセスキーを管理または作成するには、Continue to Security Credentials をクリックし、[Access Keys]セクションを展開します。

    その他の認証オプションについては、ヘルプドキュメントの「Amazon Athena への認証」を参照してください。

  4. Save & Test をクリック
  5. Permissions タブを開き、ユーザーベースの権限を設定

Personal Access Token を追加

Personal Access Token(PAT)は、Dataiku から Connect AI への接続を認証するために使用されます。きめ細かいアクセス制御を維持するため、統合ごとに個別の PAT を作成することをお勧めします

  1. Connect AI アプリの右上にある歯車アイコン()をクリックして Settings を開く
  2. Settings ページで Access Tokens セクションに移動し、 Create PAT をクリック
  3. PAT にわかりやすい名前を付けて Create をクリック
  4. トークンが表示されたらコピーして安全な場所に保存してください。再度表示されることはありません

Amazon Athena 接続の設定と PAT の生成が完了したら、Dataiku から CData MCP Server 経由でAmazon Athena のデータに接続できます。

ステップ 2:Dataiku とコード環境を準備

Dataiku の専用 Python コード環境が、MCP ベースの通信に必要なランタイムサポートを提供します。Dataiku エージェントを CData Connect AI に接続できるようにするには、Python 環境を作成し、エージェントとサーバー間の対話に必要な MCP クライアント依存関係をインストールします。

  1. Dataiku CloudCode Envs を開く
  2. Add a code env をクリックして DSS 設定ウィンドウを開く
  3. DSS で New Python env をクリック。名前を付け(例:MCP_Package)、Python 3.10 を選択(3.10 から 3.13 がサポートされています)
  4. Packages to install を開き、以下の pip パッケージを追加:
    • httpx
    • anyio
    • langchain-mcp-adapters
  5. Containerized execution を開き、Container runtime additions の下で Agent tool MCP servers support を選択
  6. Rebuild env をチェックし、Save and update をクリックしてパッケージをインストール
  7. Dataiku Cloud に戻り、Overview を開いて Open instance をクリック
  8. + New project をクリックして Blank project を選択。プロジェクト名を入力

ステップ 3:Dataiku エージェントを作成して MCP サーバーに接続

Dataiku エージェントは、Dataiku ワークスペースと CData MCP Server 間のブリッジとして機能します。この接続を有効にするには、カスタムコードベースエージェントを作成し、設定した Python 環境を割り当て、Connect AI の認証情報を埋め込んで、エージェントがリアルタイムのAmazon Athena のデータにクエリ・操作できるようにします。

  1. Agents & GenAI Models に移動し、Create your first agent をクリック
  2. Code agent を選択し、名前を付け、Agent version で Asynchronous agent without streaming を選択
  3. 上部のタブから Settings を選択。Code env selectionDefault Python code env を作成した環境(例:MCP_Package)に設定
  4. Agent の Design タブに戻り、以下のコードを貼り付けます。EMAIL と PAT を自分の値に置き換えてください
  5. 
    
    import os
    import base64
    from typing import Dict, Any, List
    
    from dataiku.llm.python import BaseLLM
    from langchain_mcp_adapters.client import MultiServerMCPClient
    
    # ---------- Persistent MCP client (cached between calls) ----------
    _MCP_CLIENT = None
    
    def _get_mcp_client() -> MultiServerMCPClient:
        """Create (or reuse) a MultiServerMCPClient to CData Cloud MCP."""
        global _MCP_CLIENT
        if _MCP_CLIENT is not None:
            return _MCP_CLIENT
    
        # Set creds via env/project variables ideally
        EMAIL = os.getenv("CDATA_EMAIL", "YOUR_EMAIL")
        PAT   = os.getenv("CDATA_PAT",   "YOUR_PAT")
        BASE_URL = "https://mcp.cloud.cdata.com/mcp"
    
        if not EMAIL or PAT == "YOUR_PAT":
            raise ValueError("Set CDATA_EMAIL and CDATA_PAT as env variables or inline in the code.")
    
        token = base64.b64encode(f"{EMAIL}:{PAT}".encode()).decode()
        headers = {"Authorization": f"Basic {token}"}
    
        _MCP_CLIENT = MultiServerMCPClient(
            connections={
                "cdata": {
                    "transport": "streamable_http",
                    "url": BASE_URL,
                    "headers": headers,
                }
            }
        )
        return _MCP_CLIENT
    
    
    def _pick_tool(tools, names: List[str]):
        L = [n.lower() for n in names]
        return next((t for t in tools if t.name.lower() in L), None)
    
    
    async def _route(prompt: str) -> str:
        """
        Simple intent router:
          - 'list connections' / 'list catalogs' -> getCatalogs
          - 'sql: ...' or 'query: ...' -> queryData
          - otherwise -> help text
        """
        client = _get_mcp_client()
        tools = await client.get_tools()
    
        p = prompt.strip()
        low = p.lower()
    
        # 1) List connections (catalogs)
        if "list connections" in low or "list catalogs" in low:
            t = _pick_tool(tools, ["getCatalogs", "listCatalogs"])
            if not t:
                return "No 'getCatalogs' tool found on the MCP server."
            res = await t.ainvoke({})
            return str(res)[:4000]
    
        # 2) Run SQL
        if low.startswith("sql:") or low.startswith("query:"):
            sql = p.split(":", 1)[1].strip()
            t = _pick_tool(tools, ["queryData", "sqlQuery", "runQuery", "query"])
            if not t:
                return "No query-capable tool (queryData/sqlQuery) found on the MCP server."
            try:
                res = await t.ainvoke({"query": sql})
                return str(res)[:4000]
            except Exception as e:
                return f"Query failed: {e}"
    
        # 3) Help
        return (
            "Connected to CData MCP
    
    "
            "Say **'list connections'** to view available sources, or run a SQL like:
    "
            "  sql: SELECT * FROM [Salesforce1].[SYS].[Connections] LIMIT 5
    
    "
            "Remember to use bracket quoting for catalog/schema/table names."
        )
    
    
    class MyLLM(BaseLLM):
        async def aprocess(self, query: Dict[str, Any], settings: Dict[str, Any], trace: Any):
            # Extract last user message from the Quick Test payload
            prompt = ""
            try:
                prompt = (query.get("messages") or [])[-1].get("content", "")
            except Exception:
                prompt = ""
    
            try:
                reply = await _route(prompt)
            except Exception as e:
                reply = f"Error: {e}"
    
            # The template expects a dict with a 'text' key
            return {"text": reply}
    
    

    クイックテストを実行

    1. 右側のパネルで Quick Test を開く
    2. JSON コードを貼り付けて Run test をクリック
    3. 
      {
         "messages": [
            {
               "role": "user",
               "content": "list connections"
            }
         ],
         "context": {}
      }
      
      

    エージェントとチャット

    Chat タブに切り替えて、「List all connections」 のようなプロンプトを試してみてください。チャット出力に接続カタログの一覧が表示されます。

    CData Connect AI を入手

    AI エージェントから 300 以上の SaaS、ビッグデータ、NoSQL ソースにアクセスするには、CData Connect AI をお試しください。

はじめる準備はできましたか?

CData Connect AI の詳細、または無料トライアルにお申し込みください:

無料トライアル お問い合わせ