CData Connect AI を使用して Azure AI Foundry から Amazon Athena のデータ と会話

Anusha M B
Anusha M B
Technical Marketing Engineer
CData Connect AI のリモート MCP サーバーを活用して、Azure AI Foundry エージェントからAmazon Athena のデータに対してセキュアに質問への回答やアクションを実行できるようにします。

Azure AI Foundry は、AI アプリケーションとエージェントの構築、デプロイ、管理のための Microsoft の包括的なプラットフォームです。タスクの自動化、質問への回答、さまざまなビジネスプロセスの支援が可能なインテリジェントエージェントを作成するための統合環境を提供します。CData Connect AI のリモート MCP と組み合わせることで、Azure AI Foundry を活用してリアルタイムのAmazon Athena のデータと対話できます。この記事では、Connect AI のリモート MCP を使用して Amazon Athena に接続し、Azure AI Foundry でAmazon Athena のデータと対話するエージェントを作成するプロセスを説明します。

CData Connect AI は、Amazon Athena のデータ に接続するための専用クラウド間インターフェースを提供します。CData Connect AI のリモート MCP サーバーにより、Azure AI Foundry と Amazon Athena の間でセキュアな通信が可能になります。これにより、ネイティブにサポートされたデータベースへのデータレプリケーションを必要とせず、Azure AI Foundry エージェントを使用してAmazon Athena のデータに質問したりアクションを実行したりできます。最適化されたデータ処理機能を備えており、フィルターや JOIN を含むサポート対象のすべての SQL 操作を効率的に Amazon Athena へ直接送信します。サーバーサイド処理を活用することで、要求されたAmazon Athena のデータを迅速に取得できます。

この記事では、Azure AI Foundry でエージェントを構築し、データと会話形式で探索(またはVibe Query)する方法を説明します。接続の原則は、どの Azure AI Foundry エージェントにも適用できます。Connect AI を使用すると、リアルタイムのAmazon Athena のデータに加えて、何百もの他のソースにアクセスできる AI エージェントを構築できます。

Amazon Athena データ連携について

CData は、Amazon Athena のライブデータにアクセスし、統合するための最も簡単な方法を提供します。お客様は CData の接続機能を以下の目的で使用しています:

  • IAM 認証情報、アクセスキー、インスタンスプロファイルなど、さまざまな方法で安全に認証できます。多様なセキュリティニーズに対応し、認証プロセスを簡素化します。
  • 詳細なエラーメッセージにより、セットアップを効率化し、問題を迅速に解決できます。
  • サーバーサイドでのクエリ実行により、パフォーマンスを向上させ、クライアントリソースへの負荷を最小限に抑えます。

ユーザーは、Tableau、Power BI、Excel などの分析ツールと Athena を統合し、お気に入りのツールから詳細な分析を行うことができます。

CData を使用した Amazon Athena のユニークなユースケースについては、ブログ記事をご覧ください:https://jp.cdata.com/blog/amazon-athena-use-cases


はじめに


ステップ 1:Azure AI Foundry リソースを作成

Amazon Athena のデータ に接続する前に、Azure ポータルで Azure AI Foundry リソースを作成する必要があります。

  1. Azure Portal にログイン。
  2. Create a resource をクリックし、Microsoft Foundry を検索。
  3. Create をクリックしてリソース作成ウィザードを開始。
  4. Basics タブで:
    • Resource group を選択または作成
    • Foundry リソースの Name を入力
    • Project name を入力
    • Next をクリック
  5. 組織の要件に応じて、StorageNetworkIdentityEncryptionTags タブを設定し、各セクションの後に Next をクリック。
  6. Review + submit タブで設定を確認し、Create をクリック。
  7. リソースが作成されたら、Go to resource をクリック。
  8. Go to Foundry portal をクリックして Azure AI Foundry ポータルにアクセス。

ステップ 2:Azure AI Foundry 用の Amazon Athena 接続を設定

Azure AI Foundry から Amazon Athena への接続は、CData Connect AI のリモート MCP によって実現されます。Azure AI Foundry からAmazon Athena のデータを操作するには、まず CData Connect AI で Amazon Athena 接続を作成・設定します。

  1. Connect AI にログインし、Connections をクリック、次に Add Connection をクリック
  2. Add Connection パネルから「Amazon Athena」を選択
  3. Amazon Athena に接続するために必要な認証プロパティを入力します。

    Amazon Athena 接続プロパティの取得・設定方法

    それでは、早速Athena に接続していきましょう。

    データに接続するには、以下の接続パラメータを指定します。

    • DataSource:接続するAmazon Athena データソース。
    • Database:接続するAmazon Athena データベース。
    • AWSRegion:Amazon Athena データがホストされているリージョン。
    • S3StagingDirectory:クエリの結果を保存するS3 フォルダ。

    Database またはDataSource が設定されていない場合、CData 製品はAmazon Athena の利用可能なデータソースからすべてのデータベースのリスト化を試みます。そのため、両方のプロパティを設定することでCData 製品のパフォーマンスが向上します。

    Amazon Athena の認証設定

    CData 製品は幅広い認証オプションに対応しています。詳しくはヘルプドキュメントの「はじめに」を参照してみてください。

    AWS キーを取得

    IAM ユーザーの認証情報を取得するには、以下のステップお試しください。

    1. IAM コンソールにサインインします。
    2. ナビゲーションペインでユーザーを選択します。
    3. ユーザーのアクセスキーを作成または管理するには、ユーザーを選択してからセキュリティ認証情報タブに移動します。

    AWS ルートアカウントの資格情報を取得するには、以下のステップをお試しください。

    1. ルートアカウントの認証情報を使用してAWS 管理コンソールにサインインします。
    2. アカウント名または番号を選択します。
    3. 表示されたメニューでMy Security Credentials を選択します。
    4. ルートアカウントのアクセスキーを管理または作成するには、Continue to Security Credentials をクリックし、[Access Keys]セクションを展開します。

    その他の認証オプションについては、ヘルプドキュメントの「Amazon Athena への認証」を参照してください。

    Save & Test をクリック
  4. Add Amazon Athena Connection ページで Permissions タブに移動し、ユーザーベースの権限を更新します。

Personal Access Token を追加

Personal Access Token(PAT)は、Azure AI Foundry から Connect AI への接続を認証するために使用されます。アクセスの粒度を維持するため、サービスごとに個別の PAT を作成することをお勧めします。

  1. Connect AI アプリの右上にある歯車アイコン()をクリックして Settings ページを開きます。
  2. Settings ページで Access Tokens セクションに移動し、 Create PAT をクリック。
  3. PAT に名前を付けて Create をクリック。
  4. Personal Access Token は作成時にのみ表示されるので、必ずコピーして安全な場所に保存してください。

接続の設定と PAT の生成が完了したら、Azure AI Foundry からAmazon Athena のデータに接続する準備が整いました。

ステップ 3:Azure AI Foundry で AI エージェントを作成

以下の手順に従って、AI エージェントを作成し、CData Connect AI に接続します:

  1. Azure AI Foundry ポータルで、New Foundry をクリックして新しいプロジェクトを作成。

  2. Start building をクリックし、Create agent を選択。

  3. エージェントの Name を入力。

  4. Setup セクションで:

    • 希望の AI model を選択
    • エージェントの動作に関する Instructions を設定

ステップ 4:CData Connect AI MCP ツールを追加

次に、CData Connect AI MCP Server をエージェントのカスタムツールとして追加します:

  1. エージェントセットアップで、Tools セクションに移動し、Add をクリック。

  2. ツールオプションから Custom を選択。

  3. Model Context Protocol を選択し、Create をクリック。

  4. MCP ツールの Name を入力(例:「CData Connect AI MCP Server」)。

  5. Remote MCP Server endpoint フィールドに次を入力:https://mcp.cloud.cdata.com/mcp/

  6. AuthenticationKey-based を選択。

  7. 認証情報を設定:

    • Header nameAuthorization
    • ValueBasic EMAIL:PATEMAIL を Connect AI のメールアドレスに、PAT を先ほど作成した Personal Access Token に置き換え)
    例:Basic [email protected]:Uu90pt5vEO...

  8. Connect をクリックして CData Connect AI への接続を確立。

オプション:エージェントにコンテキストを提供

MCP Server ツールの使用に関する具体的な指示を提供することで、エージェントの理解を向上させることができます。エージェントの Instructions セクションに、以下のようなガイダンスを追加できます:

You are an expert at using the MCP Client tool connected to the CData Connect AI MCP Server. Always search thoroughly and use the most relevant MCP Client tool for each query. Below are the available tools and a description of each:

queryData: Execute SQL queries against connected data sources and retrieve results. When you use the queryData tool, ensure you use the following format for the table name: catalog.schema.tableName
getCatalogs: Retrieve a list of available connections from CData Connect AI. The connection names should be used as catalog names in other tools and in any queries to CData Connect AI. Use the `getSchemas` tool to get a list of available schemas for a specific catalog.
getSchemas: Retrieve a list of available database schemas from CData Connect AI for a specific catalog. Use the `getTables` tool to get a list of available tables for a specific catalog and schema.
getTables: Retrieve a list of available database tables from CData Connect AI for a specific catalog and schema. Use the `getColumns` tool to get a list of available columns for a specific table.
getColumns: Retrieve a list of available database columns from CData Connect AI for a specific catalog, schema, and table.
getProcedures: Retrieve a list of stored procedures from CData Connect AI for a specific catalog and schema
getProcedureParameters: Retrieve a list of stored procedure parameters from CData Connect AI for a specific catalog, schema, and procedure.
executeProcedure: Execute stored procedures with parameters against connected data sources

ステップ 5:Amazon Athena のデータ とチャット

エージェントを設定し、CData Connect AI に接続したら、自然言語を使用してAmazon Athena のデータと対話できます:

  1. Azure AI Foundry ポータルで、エージェントの Chat with data セクションに移動。

  2. Amazon Athena のデータについて質問を開始。例:

    • 「過去 30 日間のすべての顧客を表示して」
    • 「最もパフォーマンスの高い製品は何ですか?」
    • 「Q4 の売上トレンドを分析して」
    • 「すべてのアクティブなプロジェクトと現在のステータスをリストして」

  3. エージェントは CData Connect AI MCP Server を使用してリアルタイムのAmazon Athena のデータをクエリし、ライブデータに基づいた回答を提供します。

ステップ 6:エージェントを公開

エージェントの設定とテストに満足したら、Publish をクリックして、組織で使用できるようにエージェントを公開します。

CData Connect AI を入手

クラウドアプリケーションから 300 以上の SaaS、ビッグデータ、NoSQL ソースへのリアルタイムデータアクセスを実現するには、CData Connect AI をお試しください!

はじめる準備はできましたか?

CData Connect AI の詳細、または無料トライアルにお申し込みください:

無料トライアル お問い合わせ