【MCP Server】Gumloop をAzure Data Lake Storage のデータと連携するフローを作る

加藤龍彦
加藤龍彦
デジタルマーケティング
CData Connect AI のリモートMCP サーバー を活用し、Gumloop から自動化ワークフロー内でAzure Data Lake Storage にセキュアにアクセスしてアクションを実行します。

Gumloop は、トリガー、AI ノード、API、データコネクタを組み合わせてAI を活用したワークフローを作成できるビジュアル自動化プラットフォームです。Gumloop と CData Connect AI を組み込みの「MCP (Model Context Protocol) Server」を通じて統合することで、ワークフローからライブの にシームレスにアクセスして対話できるようになります。

このプラットフォームはローコード環境を提供しているため、大規模な開発作業なしで複雑なプロセスを簡単にオーケストレーションできます。柔軟性が高く、複数のビジネスアプリケーション間での統合が可能で、ライブデータを使ったエンドツーエンドの自動化を実現します。

CData Connect AI は、Azure Data Lake Storage のデータに接続するための専用クラウド間インターフェースを提供します。CData Connect AI Remote MCP Server により、Google ADK エージェントと Azure Data Lake Storageの間でセキュアな通信が可能になります。これにより、ネイティブ対応データベースへのデータレプリケーションを必要とせずに、エージェントから Azure Data Lake Storage のデータの読み取りや操作を実行できます。CData Connect AIは最適化されたデータ処理機能を備えており、フィルタや JOIN を含むサポート対象のすべての SQL 操作を効率的に Azure Data Lake Storageへ直接送信します。サーバーサイド処理を活用することで、要求されたAzure Data Lake Storage のデータ を迅速に取得できます。

この記事では、Connect AI での Azure Data Lake Storage 接続の構成、Gumloop への MCP Serverの登録、そして Azure Data Lake Storage をクエリするワークフローの構築に必要な手順をご紹介します。

ステップ 1: Gumloop 用のAzure Data Lake Storage 接続を構成する

それでは早速、Gumloop からAzure Data Lake Storage への接続を設定していきましょう。Gumloop から Azure Data Lake Storage と対話するには、まず CData Connect AI で Azure Data Lake Storage への接続を作成して構成します。

  1. Connect AI にログインし、「Connections」をクリックして「 Add Connection」をクリックします
  2. 「Add Connection」パネルから「Azure Data Lake Storage」を選択します
  3. Azure Data Lake Storage に接続するために必要な認証情報を入力しましょう。

    Azure Data Lake Storage 接続プロパティの取得・設定方法

    Azure Data Lake Storage Gen2 への接続

    それでは、Gen2 Data Lake Storage アカウントに接続していきましょう。接続するには、以下のプロパティを設定します。

    • Account:ストレージアカウントの名前
    • FileSystem:このアカウントに使用されるファイルシステム名。例えば、Azure Blob コンテナの名前
    • Directory(オプション):レプリケートされたファイルが保存される場所へのパス。パスが指定されない場合、ファイルはルートディレクトリに保存されます

    Azure Data Lake Storage Gen2への認証

    続いて、認証方法を設定しましょう。CData 製品では、5つの認証方法をサポートしています:アクセスキー(AccessKey)の使用、共有アクセス署名(SAS)の使用、Azure Active Directory OAuth(AzureAD)経由、Azure サービスプリンシパル(AzureServicePrincipal またはAzureServicePrincipalCert)経由、およびManaged Service Identity(AzureMSI)経由です。

    アクセスキー

    アクセスキーを使用して接続するには、まずADLS Gen2ストレージアカウントで利用可能なアクセスキーを取得する必要があります。

    Azure ポータルでの手順は以下のとおりです:

    1. ADLS Gen2ストレージアカウントにアクセスします
    2. 設定でアクセスキーを選択します
    3. 利用可能なアクセスキーの1つの値をAccessKey 接続プロパティにコピーします

    接続の準備ができたら、以下のプロパティを設定してください。

    • AuthSchemeAccessKey
    • AccessKey:先ほどAzure ポータルで取得したアクセスキーの値

    共有アクセス署名(SAS)

    共有アクセス署名を使用して接続するには、まずAzure Storage Explorer ツールを使用して署名を生成する必要があります。

    接続の準備ができたら、以下のプロパティを設定してください。

    • AuthSchemeSAS
    • SharedAccessSignature:先ほど生成した共有アクセス署名の値

    その他の認証方法については、 href="/kb/help/" target="_blank">ヘルプドキュメントの「Azure Data Lake Storage Gen2への認証」セクションをご確認ください。

    「Create & Test」をクリックします
  4. 「Add Azure Data Lake Storage Connection」ページの「Permissions」タブに移動し、ユーザーベースの権限を更新します。

パーソナルアクセストークンを追加する

パーソナルアクセストークン (PAT) は、Gumloop からConnect AI への接続を認証するために使用します。アクセスの粒度を維持するために、サービスごとに個別の PAT を作成することをおすすめします。

  1. Connect AI アプリの右上にある歯車アイコン () をクリックして、設定ページを開きます。
  2. 「Settings」ページで、「Access Tokens」セクションに移動し、 「Create PAT」をクリックします。
  3. PAT に名前を付けて「Create」をクリックします。
  4. パーソナルアクセストークンは作成時にのみ表示されます。必ずコピーして、今後の使用のために安全に保管してください。

これで、Gumloop からAzure Data Lake Storage に接続する準備が整いました!

ステップ2:Gumloop でMCP Server に接続する

続いて、Connect AI の MCP Server エンドポイントと認証情報をGumloop の認証情報に追加します。

  1. Gumloop のアカウントを作成して(アカウント未作成の場合)、サインインしましょう。
  2. Gumloop Credentials のページにアクセスして、MCP Server を構成します。
  3. 「Add Credentials」をクリックし、「MCP Server」を検索して選択します
  4. 以下の詳細情報を入力します。
    • URL: https://mcp.cloud.cdata.com/mcp
    • Label: Azure Data Lake Storage-mcp-server などのわかりやすい名前
    • Access Token / API Key: 空白のままにします
    • Additional Header: Authorization: Basic YOUR EMAIL:YOUR PAT
    • 認証情報を保存します

これで、Gumloop でワークフローを構築する際に MCP Server が利用できるようになりました。

ステップ3: ワークフローを構築してGumloop でAzure Data Lake Storage のリアルタイムデータを探索する

  1. Gumloop Personal workspace にアクセスし、 「Create Flow」をクリックします。
  2. 」アイコンを選択するか、「Ctrl」+「B」を押してノードまたはサブフローを追加します。
  3. 「Ask AI」を検索して選択します。
  4. 「Show More Options」をクリックし、「Connect MCP Server?」オプションを有効にします。
  5. 「MCP Servers」ドロップダウンから、保存したMCP 認証情報を選択します。
  6. プロンプトを追加し、要件に応じてAI モデルを選択します。
  7. 必要な詳細の構成が完了したら、「Run」をクリックしてパイプラインを実行します

ワークフローの実行が完了すると、CData Connect AI MCP Serverを通じて Azure Data Lake Storage を正常に取得できたことが確認できます。MCP Client ノードを使用することで、データに対する質問、レコードの取得、アクションの実行が可能になります。

CData Connect AI でビジネスシステムのデータ活用を今すぐスタート

いかがでしたか?Gumloop からAzure Data Lake Storage へのデータ接続が10分もかからずに完了したのではないでしょうか。業務に使えそう、と感じてくださった方は、14日間の無償トライアルでAI ツールからビジネスシステムへのリアルタイムデータ接続をぜひお試しください。

はじめる準備はできましたか?

CData Connect AI の詳細、または無料トライアルにお申し込みください:

無料トライアル お問い合わせ