Agno を使って CData Connect AI 経由で BigQuery のデータと対話する

Anusha M B
Anusha M B
Technical Marketing Engineer
CData Connect AI Remote MCP Server を活用して、Agno エージェントが BigQuery のデータ に対して安全に質問やアクションを実行できるようにします。

Agno は、ツールを使って推論・計画・アクションを実行する AI エージェントを構築するための、開発者向け Python フレームワークです。 Agno はクリーンでコード駆動型のアーキテクチャを重視しており、エージェントランタイムを開発者が完全に制御できます。

CData Connect AI は、300 以上のエンタープライズデータソースを AI システムと連携させるための、セキュアなクラウド間インターフェースを提供します。 Connect AI を使用すると、リアルタイムの BigQuery のデータ をレプリケーションなしでリモート MCP エンドポイント経由で公開できます。

このガイドでは、Agno Python SDK を使用して本番環境対応の Agno エージェントを構築します。 エージェントは streamable HTTP を使用して MCP 経由で CData Connect AI に接続し、利用可能なツールを動的に検出して、 リアルタイムの BigQuery のデータ にクエリを実行します。

前提条件

  1. Python 3.9 以上
  2. CData Connect AI アカウント – こちらからサインアップまたはログイン
  3. 有効な認証情報を持つ BigQuery アカウント
  4. LLM API キー(例:OpenAI

概要

プロセスの概要は以下のとおりです。

  1. 接続:CData Connect AI で BigQuery 接続を設定します。
  2. 検出:MCP を使用して CData Connect AI が公開するツールを動的に取得します。
  3. クエリ:MCP ツールを Agno 関数としてラップし、リアルタイムの BigQuery のデータ にクエリを実行します。

BigQuery データ連携について

CData は、Google BigQuery のライブデータへのアクセスと統合を簡素化します。お客様は CData の接続機能を以下の目的で活用しています:

  • OAuth、OAuth JWT、GCP インスタンスなど、すぐに使える幅広い認証スキームのサポートにより、BigQuery へのアクセスを簡素化します。
  • BigQuery と他のアプリケーション間の双方向データアクセスにより、データワークフローを強化します。
  • SQL ストアドプロシージャを通じて、ジョブの開始・取得・キャンセル、テーブルの削除、ジョブロードの挿入など、主要な BigQuery アクションを実行できます。

多くの CData のお客様は、Google BigQuery をデータウェアハウスとして使用しており、CData ソリューションを使用して、別々のソースからビジネスデータを BigQuery に移行し、包括的な分析を行っています。また、BigQuery データの分析やレポート作成に当社の接続機能を使用するお客様も多く、両方のソリューションを使用しているお客様も多数います。

CData が Google BigQuery 体験をどのように向上させるかについての詳細は、ブログ記事をご覧ください:https://jp.cdata.com/blog/what-is-bigquery


はじめに


Step 1: CData Connect AI で BigQuery を設定

Agno からリアルタイムの BigQuery のデータ にクエリを実行するには、まず CData Connect AIBigQuery 接続を作成します。 この接続は CData Remote MCP Server 経由で公開されます。

  1. Connect AI にログインし、Sources をクリックしてから Add Connection をクリックします。
  2. Add Connection パネルから「BigQuery」を選択します。
  3. 必要な認証プロパティを入力します。

    BigQuery 接続プロパティの取得・設定方法

    Google BigQuery はOAuth 認証標準を使用します。個々のユーザーとしてGoogle API にアクセスするには、組み込みクレデンシャルを使うか、OAuth アプリを作成します。

    OAuth では、Google Apps ドメインのユーザーとしてサービスアカウントを使ってアクセスすることもできます。サービスカウントでの認証では、OAuth JWT を取得するためのアプリケーションを登録する必要があります。

    OAuth 値に加え、DatasetId、ProjectId を設定する必要があります。詳細はヘルプドキュメントの「はじめに」を参照してください。

    Create & Test をクリックします。
  4. Permissions タブを開き、ユーザーアクセスを設定します。

Personal Access Token の追加

Personal Access Token(PAT)は、Agno から CData Connect AI への MCP リクエストを認証するために使用されます。

  1. Settings を開き、Access Tokens に移動します。
  2. Create PAT をクリックします。
  3. 生成されたトークンを安全に保存します。

Step 2: 依存関係のインストールと環境変数の設定

Agno と MCP アダプターの依存関係をインストールします。LangChain は MCP ツールの互換性のためだけに含まれています。

pip install agno agno-mcp langchain-mcp-adapters

環境変数を設定します。

export CDATA_MCP_URL="https://mcp.cloud.cdata.com/mcp"
export CDATA_MCP_AUTH="Base64EncodedCredentials"
export OPENAI_API_KEY="your-openai-key"

「Base64EncodedCredentials」は、Connect AI ユーザーのメールアドレスと Personal Access Token をコロン(「:」)で結合し、Base64 エンコードした値です:Base64([email protected]:MY_CONNECT_AI_PAT)

Step 3: MCP 経由で CData Connect AI に接続

streamable HTTP を使用して MCP クライアントを作成します。これにより、CData Connect AI へのセキュアな接続が確立されます。

import os
from langchain_mcp_adapters.client import MultiServerMCPClient

mcp_client = MultiServerMCPClient(
  connections={
    "default": {
      "transport": "streamable_http",
      "url": os.environ["CDATA_MCP_URL"],
      "headers": {
        "Authorization": f"Basic {os.environ['CDATA_MCP_AUTH']}"
      }
    }
  }
)

Step 4: MCP ツールの検出

CData Connect AI は操作を MCP ツールとして公開します。これらは実行時に動的に取得されます。

langchain_tools = await mcp_client.get_tools()
for tool in langchain_tools:
  print(tool.name)

Step 5: MCP ツールを Agno 関数に変換

各 MCP ツールを Agno 関数としてラップし、エージェントで使用できるようにします。

注意:Agno がすべての推論、計画、ツール選択を行います。LangChain は CData Connect AI が公開するツールを利用するための軽量な MCP 互換レイヤーとしてのみ使用されます。

from agno.tools import Function

def make_tool_caller(lc_tool):
  async def call_tool(**kwargs):
    return await lc_tool.ainvoke(kwargs)
  return call_tool

Step 6: Agno エージェントを作成してリアルタイムの BigQuery のデータ にクエリ

Agno がすべての推論、計画、ツール呼び出しを行います。LangChain は MCP 互換性以外の役割を果たしません。

from agno.agent import Agent
from agno.models.openai import OpenAIChat

agent = Agent(
  model=OpenAIChat(
    id="gpt-4o",
    temperature=0.2,
    api_key=os.environ["OPENAI_API_KEY"]
  ),
  tools=agno_tools,
  markdown=True
)

await agent.aprint_response(
  "Show me the top 5 records from the available data source"
)

if __name__ == "__main__":
    asyncio.run(main())

以下の結果は、Agno エージェントが CData Connect AI を通じて MCP ツールを呼び出し、リアルタイムの BigQuery のデータ を返す様子を示しています。

これで、Agno エージェントを通じて自然言語でリアルタイムの BigQuery のデータ にクエリを実行できるようになりました。


CData Connect AI の詳細

300 以上の SaaS、ビッグデータ、NoSQL ソースにクラウドアプリケーションから直接アクセスするには、 CData Connect AI をぜひお試しください。

はじめる準備はできましたか?

CData Connect AI の詳細、または無料トライアルにお申し込みください:

無料トライアル お問い合わせ