CData Connect AI を使用してRelevance AI でリアルタイムの BigQuery のデータにアクセスするエージェントを構築

Yazhini G
Yazhini G
Technical Marketing Engineer
CData Connect AI のリモートMCP サーバーを活用し、Relevance AI がインテリジェントなエージェントワークフロー内でBigQuery のデータにセキュアにアクセスしてアクションを実行できるようにします。

Relevance AI は、自然言語推論を活用した自律的なワークフローを組織が作成できるAI 自動化およびエージェント構築プラットフォームです。ユーザーは、API、データベース、サードパーティシステムと連携して日常のビジネスタスクやデータ操作を完了するエージェントを視覚的に設計できます。

Relevance AI を組み込みのMCP(Model Context Protocol)サーバーを介してCData Connect AI と統合することで、エージェントはリアルタイムでBigQuery のデータをクエリ、要約、操作できるようになります。この接続により、Relevance AI のインテリジェントなワークフローエンジンとCData Connect AI のガバナンスされたエンタープライズ接続がブリッジされ、すべてのクエリが手動でデータをエクスポートすることなく、承認されたソースに対してセキュアに実行されます。

この記事では、Connect AI で BigQuery への接続を設定し、Relevance AI にCData MCP サーバーを登録し、リアルタイムのBigQuery のデータと連携するエージェントを構築する手順を説明します。

BigQuery データ連携について

CData は、Google BigQuery のライブデータへのアクセスと統合を簡素化します。お客様は CData の接続機能を以下の目的で活用しています:

  • OAuth、OAuth JWT、GCP インスタンスなど、すぐに使える幅広い認証スキームのサポートにより、BigQuery へのアクセスを簡素化します。
  • BigQuery と他のアプリケーション間の双方向データアクセスにより、データワークフローを強化します。
  • SQL ストアドプロシージャを通じて、ジョブの開始・取得・キャンセル、テーブルの削除、ジョブロードの挿入など、主要な BigQuery アクションを実行できます。

多くの CData のお客様は、Google BigQuery をデータウェアハウスとして使用しており、CData ソリューションを使用して、別々のソースからビジネスデータを BigQuery に移行し、包括的な分析を行っています。また、BigQuery データの分析やレポート作成に当社の接続機能を使用するお客様も多く、両方のソリューションを使用しているお客様も多数います。

CData が Google BigQuery 体験をどのように向上させるかについての詳細は、ブログ記事をご覧ください:https://jp.cdata.com/blog/what-is-bigquery


はじめに


ステップ1:Relevance AI 用に BigQuery への接続を設定

Relevance AI から BigQuery への接続は、CData Connect AI のリモートMCP サーバーによって実現されます。Relevance AI からBigQuery のデータを操作するには、まずCData Connect AI で BigQuery 接続を作成し設定します。

  1. Connect AI にログインして「Sources」をクリックし、 Add Connection をクリックします
  2. Add Connection パネルからBigQuery を選択します
  3. BigQuery への接続に必要な認証プロパティを入力します。

    BigQuery 接続プロパティの取得・設定方法

    Google BigQuery はOAuth 認証標準を使用します。個々のユーザーとしてGoogle API にアクセスするには、組み込みクレデンシャルを使うか、OAuth アプリを作成します。

    OAuth では、Google Apps ドメインのユーザーとしてサービスアカウントを使ってアクセスすることもできます。サービスカウントでの認証では、OAuth JWT を取得するためのアプリケーションを登録する必要があります。

    OAuth 値に加え、DatasetId、ProjectId を設定する必要があります。詳細はヘルプドキュメントの「はじめに」を参照してください。

  4. Save & Test をクリックします
  5. Permissions タブに移動し、ユーザーベースの権限を更新します

Personal Access Token の追加

Personal Access Token(PAT)は、Relevance AI からConnect AI への接続を認証するために使用されます。きめ細かなアクセス制御を維持するために、統合ごとに個別のPAT を作成することをお勧めします。

  1. Connect AI アプリの右上にある歯車アイコン()をクリックしてSettings を開きます
  2. Settings ページで「Access Tokens」セクションに移動し、 Create PAT をクリックします
  3. PAT にわかりやすい名前を付けてCreate をクリックします
  4. トークンが表示されたらコピーして安全に保存してください。再度表示されることはありません

BigQuery 接続の設定とPAT の生成が完了したら、Relevance AI はCData MCP サーバーを介してBigQuery のデータに接続できるようになります。

ステップ2:Relevance AI で接続を設定

CData Connect AI のMCP エンドポイントと認証情報をRelevance AI に登録して、エージェントがConnect AI からリアルタイムデータを呼び出せるようにします。

  1. Relevance AI にサインインし、アカウントをお持ちでない場合は作成します
  2. サイドバーからAgents に移動し、New Agent をクリックします
  3. Build from scratch を選択し、エージェントに名前を付けます(例:CData MCP Server
  4. エージェントエディター内でAdvanced を選択し、MCP Server タブに切り替えます
  5. + Add Remote MCP Tools をクリックします
  6. 表示されるダイアログで、以下のようにフィールドを入力します:
    • URL: https://mcp.cloud.cdata.com/mcp
    • Label: 任意のカスタムラベル(例: cdata_mcp_server
    • Authentication: Custom headers を選択します
    • ヘッダーのkey:value ペアを追加します。メールアドレスとPAT をemail:PAT の形式で組み合わせ、その文字列をBase64 でエンコードし、先頭にBasic を付けます
      • Key: Authorization
      • Value: Basic base64(email:PAT)

Connect をクリックして接続を確立します。Relevance AI が資格情報を検証し、エージェントで使用するためにCData Connect AI MCP サーバーを登録します。

ステップ3:リアルタイムの BigQuery のデータを使用してRelevance AI エージェントを構築・実行

  1. エージェントのRun タブに切り替えます
  2. タスクを入力します。例:「ServiceNow から最新の5件のインシデントをリストして」
  3. エージェントがMCP エンドポイント経由でConnect AI にクエリを実行し、BigQuery のデータ からのリアルタイム結果を表示します

接続が完了すると、Relevance AI エージェントはCData Connect AI MCP サーバーを介して、リアルタイムのBigQuery のデータに対してクエリの発行、レコードの取得、AI 駆動のタスクの実行が可能になります。

CData Connect AI の入手

クラウドアプリケーションから300以上のSaaS、Big Data、NoSQL ソースにアクセスするために、CData Connect AI を今すぐお試しください!

はじめる準備はできましたか?

CData Connect AI の詳細、または無料トライアルにお申し込みください:

無料トライアル お問い合わせ