Google Data Fusion で Bitbucket に連携した ETL プロセスを作成
Google Data Fusion を使用すると、セルフサービス型のデータ連携を行い、異なるデータソースを統合できます。CData JDBC Driver for Bitbucket をアップロードすることで、Google Data Fusion のパイプライン内から Bitbucket のデータ にリアルタイムでアクセスできるようになります。CData JDBC Driver を使用すると、Bitbucket のデータ を Google Data Fusion でネイティブにサポートされている任意のデータソースにパイプできますが、この記事では、Bitbucket から Google BigQuery へデータをパイプする方法を説明します。
CData JDBC Driver for Bitbucket を Google Data Fusion にアップロード
CData JDBC Driver for Bitbucket を Google Data Fusion インスタンスにアップロードして、Bitbucket のデータ にリアルタイムでアクセスしましょう。Google Data Fusion では JDBC ドライバーの命名規則に制限があるため、JAR ファイルを driver-version.jar という形式に合わせてコピーまたはリネームしてください。例:cdatabitbucket-2020.jar
- Google Data Fusion インスタンスを開きます
- をクリックしてエンティティを追加し、ドライバーをアップロードします
- "Upload driver" タブで、リネームした JAR ファイルをドラッグまたは参照します。
- "Driver configuration" タブで以下を設定します:
- Name: ドライバーの名前(cdata.jdbc.bitbucket)を作成し、メモしておきます
- Class name: JDBC クラス名を設定します:(cdata.jdbc.bitbucket.BitbucketDriver)
- "Finish" をクリックします
Google Data Fusion で Bitbucket のデータ に接続
JDBC Driver をアップロードしたら、Google Data Fusion のパイプラインで Bitbucket のデータ にリアルタイムでアクセスできます。
- Pipeline Studio に移動して、新しいパイプラインを作成します
- "Source" オプションから "Database" をクリックして、JDBC Driver 用のソースを追加します

- Database ソースの "Properties" をクリックしてプロパティを編集します
NOTE:Google Data Fusion で JDBC Driver を使用するには、ライセンス(製品版またはトライアル)とランタイムキー(RTK)が必要です。ライセンス(またはトライアル)の取得については、CData までお問い合わせください。
- Label を設定します
- Reference Name を将来の参照用の値に設定します(例:cdata-bitbucket)
- Plugin Type を "jdbc" に設定します
- Connection String を Bitbucket の JDBC URL に設定します。例:
jdbc:bitbucket:RTK=5246...;Workspace=myworkspaceslug;Schema=Informationほとんどのクエリでは、ワークスペースを設定する必要があります。唯一の例外は、Workspacesテーブルです。このテーブルはこのプロパティの設定を必要とせず、クエリを実行すると、Workspaceの設定に使用できるワークスペーススラッグのリストが提供されます。このテーブルにクエリを実行するには、スキーマを'Information'に設定し、SELECT * FROM Workspacesクエリを実行する必要があります。
Schemaを'Information'に設定すると、一般的な情報が表示されます。Bitbucketに接続するには、以下のパラメータを設定してください。
- Schema: ワークスペースのユーザー、リポジトリ、プロジェクトなどの一般的な情報を表示するには、これを'Information'に設定します。それ以外の場合は、クエリを実行するリポジトリまたはプロジェクトのスキーマに設定します。利用可能なスキーマの完全なセットを取得するには、sys_schemasテーブルにクエリを実行してください。
- Workspace: Workspacesテーブルにクエリを実行する場合を除き、必須です。Workspacesテーブルへのクエリにはこのプロパティは必要ありません。そのクエリはWorkspaceの設定に使用できるワークスペーススラッグのリストのみを返すためです。
Bitbucketでの認証
BitbucketはOAuth認証のみをサポートしています。すべてのOAuthフローからこの認証を有効にするには、カスタムOAuthアプリケーションを作成し、AuthSchemeをOAuthに設定する必要があります。
特定の認証ニーズ(デスクトップアプリケーション、Webアプリケーション、ヘッドレスマシン)に必要な接続プロパティについては、ヘルプドキュメントを必ず確認してください。
カスタムOAuthアプリケーションの作成
Bitbucketアカウントから、以下のステップを実行します。
- 設定(歯車アイコン)に移動し、ワークスペース設定を選択します。
- アプリと機能セクションで、OAuthコンシューマーを選択します。
- コンシューマーを追加をクリックします。
- カスタムアプリケーションの名前と説明を入力します。
- コールバックURLを設定します。
- デスクトップアプリケーションとヘッドレスマシンの場合、http://localhost:33333または任意のポート番号を使用します。ここで設定するURIがCallbackURLプロパティになります。
- Webアプリケーションの場合、信頼できるリダイレクトURLにコールバックURLを設定します。このURLは、ユーザーがアプリケーションにアクセスが許可されたことを確認するトークンを持って戻るWebの場所です。
- クライアント認証情報を使用して認証する予定の場合、これはプライベートコンシューマーですを選択する必要があります。ドライバーでは、AuthSchemeをclientに設定する必要があります。
- OAuthアプリケーションに与える権限を選択します。これにより、読み取りおよび書き込みできるデータが決まります。
- 新しいカスタムアプリケーションを保存するには、保存をクリックします。
- アプリケーションが保存された後、それを選択して設定を表示できます。アプリケーションのKeyとSecretが表示されます。これらを将来の使用のために記録してください。Keyを使用してOAuthClientIdを設定し、Secretを使用してOAuthClientSecretを設定します。
ビルトイン接続文字列デザイナー
JDBC URL の作成には、Bitbucket JDBC Driver に組み込まれている接続文字列デザイナーを使用できます。JAR ファイルをダブルクリックするか、コマンドラインから JAR ファイルを実行してください。
java -jar cdata.jdbc.bitbucket.jar接続プロパティを入力し、接続文字列をクリップボードにコピーします。
- Import Query を Bitbucket から取得したいデータを抽出する SQL クエリに設定します。例:
SELECT * FROM Issues
- "Sink" タブから、同期先シンクを追加します(この例では Google BigQuery を使用します)
- BigQuery シンクの "Properties" をクリックしてプロパティを編集します
- Label を設定します
- Reference Name を bitbucket-bigquery のような値に設定します
- Project ID を特定の Google BigQuery プロジェクト ID に設定します(またはデフォルトの "auto-detect" のままにします)
- Dataset を特定の Google BigQuery データセットに設定します
- Table を Bitbucket のデータ を挿入するテーブル名に設定します
Source と Sink を設定すると、Bitbucket のデータ を Google BigQuery にパイプする準備が整います。パイプラインを保存してデプロイしてください。パイプラインを実行すると、Google Data Fusion が Bitbucket からリアルタイムデータをリクエストし、Google BigQuery にインポートします。

これはシンプルなパイプラインの例ですが、変換、分析、条件などを使用してより複雑な Bitbucket パイプラインを作成できます。CData JDBC Driver for Bitbucket の 30日間の無償トライアルをダウンロードして、今すぐ Google Data Fusion で Bitbucket のデータ をリアルタイムで活用しましょう。