LlamaIndex を使って Python でBitbucket データに自然言語でクエリを実行する方法
CData Python Connector for Bitbucket を使用して、Bitbucket からリアルタイムデータへのクエリを開始しましょう。LlamaIndex と AI の力を活用して、複雑な SQL クエリを書くことなく、シンプルな自然言語でインサイトを取得できます。意思決定を強化するリアルタイムデータアクセスのメリットを享受しながら、既存の Python アプリケーションと簡単に統合できます。
CData Python Connector は、組み込みの最適化されたデータ処理により、Python でリアルタイムのBitbucket のデータを操作する際に比類のないパフォーマンスを提供します。Python から複雑な SQL クエリを発行すると、ドライバーはフィルターや集計などのサポートされた SQL 操作を直接 Bitbucket にプッシュし、埋め込み SQL エンジンを使用してサポートされていない操作(多くの場合 SQL 関数や JOIN 操作)をクライアント側で処理します。
トレンド分析、レポート作成、データの可視化など、CData Python Connector を使用すれば、リアルタイムのデータソースの可能性を最大限に活用できます。
概要
LlamaIndex を使用して、CData Python Connector forBitbucket のデータでリアルタイムデータにクエリを実行する方法の概要です:
- ロギング、データベース接続、NLP に必要な Python、CData、LlamaIndex モジュールをインポートします。
- アプリケーションからの API リクエストを認証するための OpenAI API キーを取得します。
- CData Python Connector を使用してリアルタイムのBitbucket のデータに接続します。
- OpenAI を初期化し、自然言語クエリを処理するための SQLDatabase と NLSQLTableQueryEngine のインスタンスを作成します。
- クエリエンジンと特定のデータベースインスタンスを作成します。
- 自然言語クエリ(例:「最も稼いでいる従業員は誰ですか?」)を実行して、データベースから構造化されたレスポンスを取得します。
- 取得したデータを分析してインサイトを得て、データドリブンな意思決定に役立てます。
必要なモジュールのインポート
CData、データベース接続、自然言語クエリに必要なモジュールをインポートします。
import os import logging import sys # ロギングの設定 logging.basicConfig(stream=sys.stdout, level=logging.INFO, force=True) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) # CData と LlamaIndex に必要なモジュールをインポート import cdata.bitbucket as mod from sqlalchemy import create_engine from llama_index.core.query_engine import NLSQLTableQueryEngine from llama_index.core import SQLDatabase from llama_index.llms.openai import OpenAI
OpenAI API キーの設定
OpenAI の言語モデルを使用するには、API キーを環境変数として設定する必要があります。システムの環境変数で OpenAI API キーが利用可能であることを確認してください。
# 環境変数から OpenAI API キーを取得 OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] ''または、コード内で直接 API キーを追加することもできます(ただし、セキュリティリスクのため、本番環境ではこの方法は推奨されません):'' # API キーを直接設定(本番使用には非推奨) OPENAI_API_KEY = "your-api-key-here"
データベース接続の作成
次に、必要な接続プロパティを含む接続文字列を使用して、CData Connector で Bitbucket への接続を確立します。
ほとんどのクエリでは、ワークスペースを設定する必要があります。唯一の例外は、Workspacesテーブルです。このテーブルはこのプロパティの設定を必要とせず、クエリを実行すると、Workspaceの設定に使用できるワークスペーススラッグのリストが提供されます。このテーブルにクエリを実行するには、スキーマを'Information'に設定し、SELECT * FROM Workspacesクエリを実行する必要があります。
Schemaを'Information'に設定すると、一般的な情報が表示されます。Bitbucketに接続するには、以下のパラメータを設定してください。
- Schema: ワークスペースのユーザー、リポジトリ、プロジェクトなどの一般的な情報を表示するには、これを'Information'に設定します。それ以外の場合は、クエリを実行するリポジトリまたはプロジェクトのスキーマに設定します。利用可能なスキーマの完全なセットを取得するには、sys_schemasテーブルにクエリを実行してください。
- Workspace: Workspacesテーブルにクエリを実行する場合を除き、必須です。Workspacesテーブルへのクエリにはこのプロパティは必要ありません。そのクエリはWorkspaceの設定に使用できるワークスペーススラッグのリストのみを返すためです。
Bitbucketでの認証
BitbucketはOAuth認証のみをサポートしています。すべてのOAuthフローからこの認証を有効にするには、カスタムOAuthアプリケーションを作成し、AuthSchemeをOAuthに設定する必要があります。
特定の認証ニーズ(デスクトップアプリケーション、Webアプリケーション、ヘッドレスマシン)に必要な接続プロパティについては、ヘルプドキュメントを必ず確認してください。
カスタムOAuthアプリケーションの作成
Bitbucketアカウントから、以下のステップを実行します。
- 設定(歯車アイコン)に移動し、ワークスペース設定を選択します。
- アプリと機能セクションで、OAuthコンシューマーを選択します。
- コンシューマーを追加をクリックします。
- カスタムアプリケーションの名前と説明を入力します。
- コールバックURLを設定します。
- デスクトップアプリケーションとヘッドレスマシンの場合、http://localhost:33333または任意のポート番号を使用します。ここで設定するURIがCallbackURLプロパティになります。
- Webアプリケーションの場合、信頼できるリダイレクトURLにコールバックURLを設定します。このURLは、ユーザーがアプリケーションにアクセスが許可されたことを確認するトークンを持って戻るWebの場所です。
- クライアント認証情報を使用して認証する予定の場合、これはプライベートコンシューマーですを選択する必要があります。ドライバーでは、AuthSchemeをclientに設定する必要があります。
- OAuthアプリケーションに与える権限を選択します。これにより、読み取りおよび書き込みできるデータが決まります。
- 新しいカスタムアプリケーションを保存するには、保存をクリックします。
- アプリケーションが保存された後、それを選択して設定を表示できます。アプリケーションのKeyとSecretが表示されます。これらを将来の使用のために記録してください。Keyを使用してOAuthClientIdを設定し、Secretを使用してOAuthClientSecretを設定します。
Bitbucket への接続
# CData Python Connector for Bitbucket を使用してデータベースエンジンを作成
engine = create_engine("cdata_bitbucket_2:///?User=Workspace=myworkspaceslug;Schema=Information")
OpenAI インスタンスの初期化
OpenAI 言語モデルのインスタンスを作成します。ここで、temperature やモデルバージョンなどのパラメータを指定できます。
# OpenAI 言語モデルインスタンスを初期化 llm = OpenAI(temperature=0.0, model="gpt-3.5-turbo")
データベースとクエリエンジンの設定
SQL データベースとクエリエンジンを設定します。NLSQLTableQueryEngine を使用すると、SQL データベースに対して自然言語クエリを実行できます。
# SQL データベースインスタンスを作成 sql_db = SQLDatabase(engine) # すべてのテーブルを含む # 自然言語 SQL クエリ用のクエリエンジンを初期化 query_engine = NLSQLTableQueryEngine(sql_database=sql_db)
クエリの実行
これで、リアルタイムのデータソースに対して自然言語クエリを実行できます。この例では、最も稼いでいる従業員上位 2 名をクエリします。
# クエリ文字列を定義 query_str = "Who are the top earning employees?" # クエリエンジンからレスポンスを取得 response = query_engine.query(query_str) # レスポンスを出力 print(response)
CData Python Connector for Bitbucket の無料 30 日間トライアルをダウンロードして、リアルタイムデータへのシームレスなクエリを始めましょう。自然言語処理の力を体験し、データから貴重なインサイトを引き出してください。