CData SSIS Components を使用して Bitbucket のデータを Google BigQuery にマイグレーション

Cameron Leblanc
Cameron Leblanc
Technology Evangelist
CData SSIS Tasks for Bitbucket と Google BigQuery を使用して、Bitbucket のデータを Google BigQuery に簡単にプッシュできます。

Google BigQuery は、サーバーレスで高いスケーラビリティとコスト効率を備えたデータウェアハウスであり、組織がビッグデータを実用的なインサイトに変換できるよう設計されています。

CData SSIS Components は、SQL Server Integration Services を拡張し、さまざまなソースやデスティネーションからデータを簡単にインポート・エクスポートできるようにします。

この記事では、BigQuery へのエクスポート時のデータ型マッピングの考慮事項を確認し、CData SSIS Components for Bitbucket と BigQuery を使用してBitbucket のデータを Google BigQuery にマイグレーションする方法を説明します。

データ型マッピング

Google BigQuery スキーマ CData スキーマ

STRING, GEOGRAPHY, JSON, INTERVAL

string

BYTES

binary

INTEGER

long

FLOAT

double

NUMERIC, BIGNUMERIC

decimal

BOOLEAN

bool

DATE

date

TIME

time

DATETIME, TIMESTAMP

datetime

STRUCT

下記参照

ARRAY

下記参照


STRUCT 型と ARRAY 型

Google BigQuery は、1 つの行に複合値を格納するための STRUCT と ARRAY という 2 種類の型をサポートしています。Google BigQuery の一部では、これらは RECORD 型および REPEATED 型としても知られています。

STRUCT は、名前でアクセスでき、異なる型を持つことができる固定サイズの値のグループです。コンポーネントは struct をフラット化し、ドット表記の名前でフィールドにアクセスできるようにします。これらのドット表記の名前は引用符で囲む必要があることに注意してください。

ARRAY は、同じ型の値で任意のサイズを持つことができるグループです。コンポーネントは配列を単一の複合値として扱い、JSON 集約として報告します。これらの型は組み合わせることができ、STRUCT 型が ARRAY フィールドを含んだり、ARRAY フィールドが STRUCT 値のリストになったりする場合があります。

特別な考慮事項

  • Google BigQuery には、DATETIME(タイムゾーンなし)と TIMESTAMP(タイムゾーンあり)の両方のデータ型があり、CData SSIS Components はローカルマシンのタイムゾーンに基づいて datetime にマッピングします。
  • Google BigQuery では、NUMERIC 型は 38 桁の精度と小数点以下最大 9 桁をサポートし、BIGNUMERIC 型は 76 桁の精度と小数点以下最大 38 桁をサポートします。CData SSIS Components for Google BigQuery は精度/スケールを自動検出しますが、Destination コンポーネントでは高精度カラムを手動でマッピングできます。
  • INTERVAL データ型:
    • コンポーネントは INTERVAL 型を文字列として表現します。クエリで INTERVAL 型が必要な場合は、BigQuery SQL の INTERVAL フォーマットを使用して INTERVAL を指定する必要があります:
      YEAR-MONTH DAY HOUR:MINUTE:SECOND.FRACTION
    • 例えば、「5 年と 11 ヶ月、マイナス 10 日と 3 時間と 2.5 秒」という値は正しいフォーマットでは以下のようになります:
      5-11 -10 -3:0:0.2.5

前提条件

プロジェクトの作成とコンポーネントの追加

  1. Visual Studio を開き、新しい Integration Services プロジェクトを作成します。
  2. Control Flow 画面に新しい Data Flow Task を追加し、Data Flow Task を開きます。
  3. Data Flow Task に CData Bitbucket Source コントロールと CData GoogleBigQuery Destination コントロールを追加します。

Bitbucket ソースの設定

以下の手順に従って、Bitbucket への接続に必要なプロパティを指定します。

  1. CData Bitbucket Source をダブルクリックしてソースコンポーネントエディタを開き、新しい接続を追加します。
  2. CData Bitbucket Connection Manager で接続プロパティを設定し、接続をテストして保存します。

    ほとんどのクエリでは、ワークスペースを設定する必要があります。唯一の例外は、Workspacesテーブルです。このテーブルはこのプロパティの設定を必要とせず、クエリを実行すると、Workspaceの設定に使用できるワークスペーススラッグのリストが提供されます。このテーブルにクエリを実行するには、スキーマを'Information'に設定し、SELECT * FROM Workspacesクエリを実行する必要があります。

    Schemaを'Information'に設定すると、一般的な情報が表示されます。Bitbucketに接続するには、以下のパラメータを設定してください。

    • Schema: ワークスペースのユーザー、リポジトリ、プロジェクトなどの一般的な情報を表示するには、これを'Information'に設定します。それ以外の場合は、クエリを実行するリポジトリまたはプロジェクトのスキーマに設定します。利用可能なスキーマの完全なセットを取得するには、sys_schemasテーブルにクエリを実行してください。
    • Workspace: Workspacesテーブルにクエリを実行する場合を除き、必須です。Workspacesテーブルへのクエリにはこのプロパティは必要ありません。そのクエリはWorkspaceの設定に使用できるワークスペーススラッグのリストのみを返すためです。

    Bitbucketでの認証

    BitbucketはOAuth認証のみをサポートしています。すべてのOAuthフローからこの認証を有効にするには、カスタムOAuthアプリケーションを作成し、AuthSchemeをOAuthに設定する必要があります。

    特定の認証ニーズ(デスクトップアプリケーション、Webアプリケーション、ヘッドレスマシン)に必要な接続プロパティについては、ヘルプドキュメントを必ず確認してください。

    カスタムOAuthアプリケーションの作成

    Bitbucketアカウントから、以下のステップを実行します。

    1. 設定(歯車アイコン)に移動し、ワークスペース設定を選択します。
    2. アプリと機能セクションで、OAuthコンシューマーを選択します。
    3. コンシューマーを追加をクリックします。
    4. カスタムアプリケーションの名前と説明を入力します。
    5. コールバックURLを設定します。
      • デスクトップアプリケーションとヘッドレスマシンの場合、http://localhost:33333または任意のポート番号を使用します。ここで設定するURIがCallbackURLプロパティになります。
      • Webアプリケーションの場合、信頼できるリダイレクトURLにコールバックURLを設定します。このURLは、ユーザーがアプリケーションにアクセスが許可されたことを確認するトークンを持って戻るWebの場所です。
    6. クライアント認証情報を使用して認証する予定の場合、これはプライベートコンシューマーですを選択する必要があります。ドライバーでは、AuthSchemeをclientに設定する必要があります。
    7. OAuthアプリケーションに与える権限を選択します。これにより、読み取りおよび書き込みできるデータが決まります。
    8. 新しいカスタムアプリケーションを保存するには、保存をクリックします。
    9. アプリケーションが保存された後、それを選択して設定を表示できます。アプリケーションのKeyとSecretが表示されます。これらを将来の使用のために記録してください。Keyを使用してOAuthClientIdを設定し、Secretを使用してOAuthClientSecretを設定します。
  3. 接続を保存後、「Table or view」を選択し、Google BigQuery にエクスポートするテーブルまたはビューを選択して、CData Bitbucket Source Editor を閉じます。

Google BigQuery デスティネーションの設定

Bitbucket Source を設定したら、Google BigQuery 接続を設定してカラムをマッピングします。

  1. CData Google BigQuery Destination をダブルクリックしてデスティネーションコンポーネントエディタを開き、新しい接続を追加します。
  2. CData GoogleBigQuery Connection Manager で接続プロパティを設定し、接続をテストして保存します。
    • Google は OAuth 認証標準を使用しています。個々のユーザーに代わって Google API にアクセスするには、埋め込み資格情報を使用するか、独自の OAuth アプリを登録できます。 OAuth を使用すると、サービスアカウントを使用して Google Apps ドメイン内のユーザーに代わって接続することもできます。サービスアカウントで認証するには、アプリケーションを登録して OAuth JWT 値を取得します。 OAuth 値に加えて、DatasetId と ProjectId を指定します。OAuth の使用ガイドについては、ヘルプドキュメントの「Getting Started」章を参照してください。

    便利な接続プロパティ

    • QueryPassthrough: True に設定すると、クエリは Google BigQuery に直接渡されます。
    • ConvertDateTimetoGMT: True に設定すると、コンポーネントはローカルマシンの時刻ではなく、日時値を GMT に変換します。
    • FlattenObjects: デフォルトでは、コンポーネントは STRUCT カラムの各フィールドを独自のカラムとして報告し、STRUCT カラム自体は非表示にします。False に設定すると、トップレベルの STRUCT は展開されず、独自のカラムとして残ります。このカラムの値は JSON 集約として報告されます。
    • SupportCaseSensitiveTables: このプロパティを true に設定すると、同じ名前で大文字小文字が異なるテーブルは、すべてメタデータで報告されるように名前が変更されます。デフォルトでは、プロバイダーはテーブル名を大文字小文字を区別しないものとして扱うため、複数のテーブルが同じ名前で大文字小文字が異なる場合、メタデータでは 1 つだけが報告されます。
  3. 接続を保存後、Use a Table メニューでテーブルを選択し、Action メニューで Insert を選択します。
  4. Column Mappings タブで、入力カラムからデスティネーションカラムへのマッピングを設定します。

プロジェクトの実行

これでプロジェクトを実行できます。SSIS Task の実行が完了すると、SQL テーブルのデータが選択したテーブルにエクスポートされます。

はじめる準備はできましたか?

Bitbucket SSIS Component の無料トライアルをダウンロードしてお試しください:

 ダウンロード

詳細:

Bitbucket Icon Bitbucket SSIS Components お問い合わせ

SSIS ソース元 & 接続先コンポーネントは、SQL Server SSIS のワークフロー内で簡単にBitbucket データにリアルタイム接続できるパワフルなツールです。

データフロー内のBitbucket コンポーネントを使ってBitbucket データと連携できます。データ同期、ローカルバックアップ、ワークフローの自動化などに最適!