LlamaIndex を使って Python でDynamics 365 データに自然言語でクエリを実行する方法
CData Python Connector for Dynamics 365 を使用して、Dynamics 365 からリアルタイムデータへのクエリを開始しましょう。LlamaIndex と AI の力を活用して、複雑な SQL クエリを書くことなく、シンプルな自然言語でインサイトを取得できます。意思決定を強化するリアルタイムデータアクセスのメリットを享受しながら、既存の Python アプリケーションと簡単に統合できます。
CData Python Connector は、組み込みの最適化されたデータ処理により、Python でリアルタイムのDynamics 365 のデータを操作する際に比類のないパフォーマンスを提供します。Python から複雑な SQL クエリを発行すると、ドライバーはフィルターや集計などのサポートされた SQL 操作を直接 Dynamics 365 にプッシュし、埋め込み SQL エンジンを使用してサポートされていない操作(多くの場合 SQL 関数や JOIN 操作)をクライアント側で処理します。
トレンド分析、レポート作成、データの可視化など、CData Python Connector を使用すれば、リアルタイムのデータソースの可能性を最大限に活用できます。
Dynamics 365 データ連携について
CData は、Microsoft Dynamics 365 のライブデータへのアクセスと統合を簡素化します。お客様は CData の接続機能を以下の目的で活用しています:
- Sales、Customer Service、Finance & Operations、Marketing など、Dynamics 365 エコシステム全体のデータの読み取りと書き込みができます。
- カスタマイズ可能なキャッシュと、インテリジェントなクエリ集約・分離により、Dynamics CRM のネイティブ機能を拡張できます。
- Azure Active Directory、Azure マネージド サービス ID 認証情報、クライアントシークレットまたは証明書を使用した Azure サービスプリンシパルなど、さまざまな方法で Dynamics 365 に安全に認証できます。
- SQL ストアドプロシージャを使用して、Dynamics 365 エンティティを管理できます。エンティティ間の関連付けの一覧表示、作成、削除などが可能です。
CData のお客様は、データをデータウェアハウスにレプリケートしたい場合(他のデータソースと併せて)や、Microsoft エコシステム内のお気に入りのデータツール(Power BI、Excel など)または外部ツール(Tableau、Looker など)からライブ Dynamics 365 データを分析したい場合など、さまざまな理由で当社の Dynamics 365 接続ソリューションを使用しています。
はじめに
概要
LlamaIndex を使用して、CData Python Connector forDynamics 365 のデータでリアルタイムデータにクエリを実行する方法の概要です:
- ロギング、データベース接続、NLP に必要な Python、CData、LlamaIndex モジュールをインポートします。
- アプリケーションからの API リクエストを認証するための OpenAI API キーを取得します。
- CData Python Connector を使用してリアルタイムのDynamics 365 のデータに接続します。
- OpenAI を初期化し、自然言語クエリを処理するための SQLDatabase と NLSQLTableQueryEngine のインスタンスを作成します。
- クエリエンジンと特定のデータベースインスタンスを作成します。
- 自然言語クエリ(例:「最も稼いでいる従業員は誰ですか?」)を実行して、データベースから構造化されたレスポンスを取得します。
- 取得したデータを分析してインサイトを得て、データドリブンな意思決定に役立てます。
必要なモジュールのインポート
CData、データベース接続、自然言語クエリに必要なモジュールをインポートします。
import os import logging import sys # ロギングの設定 logging.basicConfig(stream=sys.stdout, level=logging.INFO, force=True) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) # CData と LlamaIndex に必要なモジュールをインポート import cdata.dynamics365 as mod from sqlalchemy import create_engine from llama_index.core.query_engine import NLSQLTableQueryEngine from llama_index.core import SQLDatabase from llama_index.llms.openai import OpenAI
OpenAI API キーの設定
OpenAI の言語モデルを使用するには、API キーを環境変数として設定する必要があります。システムの環境変数で OpenAI API キーが利用可能であることを確認してください。
# 環境変数から OpenAI API キーを取得 OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] ''または、コード内で直接 API キーを追加することもできます(ただし、セキュリティリスクのため、本番環境ではこの方法は推奨されません):'' # API キーを直接設定(本番使用には非推奨) OPENAI_API_KEY = "your-api-key-here"
データベース接続の作成
次に、必要な接続プロパティを含む接続文字列を使用して、CData Connector で Dynamics 365 への接続を確立します。
Dynamics 365 接続プロパティの取得・設定方法
Microsoft Dynamics 365 への接続
Microsoft Dynamics 365 ドライバーは、以下のMicrosoft Dynamics 365 エディションへの接続をサポートしています。
- CustomerService
- FieldService
- FinOpsOnline (デフォルト)
- FinOpsOnPremise
- HumanResources
- Marketing
- ProjectOperations
- Sales
Notes:
- Supply Chain Management はFinance and Operations と同一です。これらのいずれかに接続するには、Edition をFinOpsOnline またはFinOpsOnPremise のいずれかに設定します。
- Microsoft Dynamics 365 Business Central については、個別のMicrosoft Dynamics 365 Business Central ドライバーを使用してください。
- OrganizationURL:お使いのMicrosoft Dynamics 365 組織のURL。例えば、https://orgcb42e1d0.crm.dynamics.com。
- Edition:上記のエディション一覧に示すとおり。
Microsoft Dynamics 365 への認証
Microsoft Dynamics 365 は、Microsoft Entra ID(Azure AD)、Azure サービスプリンシパル、Azure マネージドID(MSI)を経由する認証をサポートします。これらはすべてOAuth 規格に基づきます。 認証方法の詳細は、ヘルプドキュメントを参照してください。
Dynamics 365 への接続
# CData Python Connector for Dynamics 365 を使用してデータベースエンジンを作成
engine = create_engine("cdata_dynamics365_2:///?User=OrganizationUrl=https://myaccount.operations.dynamics.com/;Edition=Sales;")
OpenAI インスタンスの初期化
OpenAI 言語モデルのインスタンスを作成します。ここで、temperature やモデルバージョンなどのパラメータを指定できます。
# OpenAI 言語モデルインスタンスを初期化 llm = OpenAI(temperature=0.0, model="gpt-3.5-turbo")
データベースとクエリエンジンの設定
SQL データベースとクエリエンジンを設定します。NLSQLTableQueryEngine を使用すると、SQL データベースに対して自然言語クエリを実行できます。
# SQL データベースインスタンスを作成 sql_db = SQLDatabase(engine) # すべてのテーブルを含む # 自然言語 SQL クエリ用のクエリエンジンを初期化 query_engine = NLSQLTableQueryEngine(sql_database=sql_db)
クエリの実行
これで、リアルタイムのデータソースに対して自然言語クエリを実行できます。この例では、最も稼いでいる従業員上位 2 名をクエリします。
# クエリ文字列を定義 query_str = "Who are the top earning employees?" # クエリエンジンからレスポンスを取得 response = query_engine.query(query_str) # レスポンスを出力 print(response)
CData Python Connector for Dynamics 365 の無料 30 日間トライアルをダウンロードして、リアルタイムデータへのシームレスなクエリを始めましょう。自然言語処理の力を体験し、データから貴重なインサイトを引き出してください。