LlamaIndex を使って Python でGMO MakeShop データに自然言語でクエリを実行する方法

Jerod Johnson
Jerod Johnson
Senior Technology Evangelist
Python で LlamaIndex を使用してリアルタイムのGMO MakeShop のデータに自然言語でクエリを実行。

CData Python Connector for GMO MakeShop を使用して、GMO MakeShop からリアルタイムデータへのクエリを開始しましょう。LlamaIndex と AI の力を活用して、複雑な SQL クエリを書くことなく、シンプルな自然言語でインサイトを取得できます。意思決定を強化するリアルタイムデータアクセスのメリットを享受しながら、既存の Python アプリケーションと簡単に統合できます。

CData Python Connector は、組み込みの最適化されたデータ処理により、Python でリアルタイムのGMO MakeShop のデータを操作する際に比類のないパフォーマンスを提供します。Python から複雑な SQL クエリを発行すると、ドライバーはフィルターや集計などのサポートされた SQL 操作を直接 GMO MakeShop にプッシュし、埋め込み SQL エンジンを使用してサポートされていない操作(多くの場合 SQL 関数や JOIN 操作)をクライアント側で処理します。

トレンド分析、レポート作成、データの可視化など、CData Python Connector を使用すれば、リアルタイムのデータソースの可能性を最大限に活用できます。

概要

LlamaIndex を使用して、CData Python Connector forGMO MakeShop のデータでリアルタイムデータにクエリを実行する方法の概要です:

  • ロギング、データベース接続、NLP に必要な Python、CData、LlamaIndex モジュールをインポートします。
  • アプリケーションからの API リクエストを認証するための OpenAI API キーを取得します。
  • CData Python Connector を使用してリアルタイムのGMO MakeShop のデータに接続します。
  • OpenAI を初期化し、自然言語クエリを処理するための SQLDatabase と NLSQLTableQueryEngine のインスタンスを作成します。
  • クエリエンジンと特定のデータベースインスタンスを作成します。
  • 自然言語クエリ(例:「最も稼いでいる従業員は誰ですか?」)を実行して、データベースから構造化されたレスポンスを取得します。
  • 取得したデータを分析してインサイトを得て、データドリブンな意思決定に役立てます。

必要なモジュールのインポート

CData、データベース接続、自然言語クエリに必要なモジュールをインポートします。

import os
import logging
import sys

# ロギングの設定
logging.basicConfig(stream=sys.stdout, level=logging.INFO, force=True)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))

# CData と LlamaIndex に必要なモジュールをインポート
import cdata.gmomakeshop as mod
from sqlalchemy import create_engine
from llama_index.core.query_engine import NLSQLTableQueryEngine
from llama_index.core import SQLDatabase
from llama_index.llms.openai import OpenAI

OpenAI API キーの設定

OpenAI の言語モデルを使用するには、API キーを環境変数として設定する必要があります。システムの環境変数で OpenAI API キーが利用可能であることを確認してください。

# 環境変数から OpenAI API キーを取得
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]

''または、コード内で直接 API キーを追加することもできます(ただし、セキュリティリスクのため、本番環境ではこの方法は推奨されません):''

# API キーを直接設定(本番使用には非推奨)
OPENAI_API_KEY = "your-api-key-here"

データベース接続の作成

次に、必要な接続プロパティを含む接続文字列を使用して、CData Connector で GMO MakeShop への接続を確立します。

GMO MakeShop に接続するには、MembersAccessCode、OrdersAccessCode、ProductsAccessCode、およびShopId が必要です。

GMO MakeShop へのアクセスの設定

MembersAccessCode、OrdersAccessCode、ProductsAccessCode、およびShopId を取得するには、以下の手順に従ってください。

  • GMO MakeShop には各API のAccessCode が必要です。
  • GMO MakeShop Store Manager にログインし、メニューの「ショップ作成」をクリックします。
  • 左ナビゲーションメニューの「外部システム連携」から任意の連携対象設定ををクリックします(メニューに表示されない場合は別途GMO MakeShop にご確認ください)。
  • 商品データ連携設定の場合:認証コードの「発行」ボタンをクリックし、ProductsAccessCode を取得します。
  • 注文データ連携設定の場合:最初に「注文情報参照」と「注文情報変更」の設定を選択します。選択後、認証コードの「発行」ボタンをクリックし、OrdersAccessCode を取得します。
  • 会員データ連携設定の場合:最初に「会員情報の(参照・登録・変更・削除)」の設定を選択します。選択後、認証コードの「発行」ボタンをクリックし、MembersAccessCode を取得します。
  • 会員認証連携設定の場合:認証コードの「発行」ボタンをクリックし、ProductsAccessCode を取得します。

GMO MakeShop アカウントの認証

次の接続プロパティを設定して接続します。

  • ShopId:接続先のGMO MakeShop Store ID を設定。GMO MakeShop Store ID はログイン用の ID と同じです。
  • OrdersAccessCode:「注文データ連携設定」から取得した「認証コード」を設定。このプロパティは Orders テーブルにアクセスする場合に必要です。
  • ProductsAccessCode:「商品データ連携設定」から取得した「認証コード」を設定。このプロパティは Products テーブルにアクセスする場合に必要です。
  • MembersAccessCode:「会員データ連携設定」から取得した「認証コード」を設定。このプロパティは Members テーブルにアクセスする場合に必要です。
  • MemberAuthenticationCode:「会員認証連携設定」から取得した「認証コード」を設定。このプロパティは MemberAuthenticationConfirm を実行する場合に必要です。
  • Password:GMO MakeShop Store Manager のログインユーザーのパスワードを指定。このプロパティは ProductCategoryRegistrationOrModification,ProductMemberGroupPriceRegistrationOrModification,ProductOptionRegistrationOrModification,ProductRegistrationOrModification を実行する場合に必要です。

GMO MakeShop への接続

# CData Python Connector for GMO MakeShop を使用してデータベースエンジンを作成
engine = create_engine("cdata_gmomakeshop_2:///?User=ShopId=MyShopId;ProductsAccessCode=MyProductsAccessCode;MembersAccessCode=MyMembersAccessCode;OrdersAccessCode=MyOrdersAccessCode;")

OpenAI インスタンスの初期化

OpenAI 言語モデルのインスタンスを作成します。ここで、temperature やモデルバージョンなどのパラメータを指定できます。

# OpenAI 言語モデルインスタンスを初期化
llm = OpenAI(temperature=0.0, model="gpt-3.5-turbo")

データベースとクエリエンジンの設定

SQL データベースとクエリエンジンを設定します。NLSQLTableQueryEngine を使用すると、SQL データベースに対して自然言語クエリを実行できます。

# SQL データベースインスタンスを作成
sql_db = SQLDatabase(engine)  # すべてのテーブルを含む

# 自然言語 SQL クエリ用のクエリエンジンを初期化
query_engine = NLSQLTableQueryEngine(sql_database=sql_db)

クエリの実行

これで、リアルタイムのデータソースに対して自然言語クエリを実行できます。この例では、最も稼いでいる従業員上位 2 名をクエリします。

# クエリ文字列を定義
query_str = "Who are the top earning employees?"

# クエリエンジンからレスポンスを取得
response = query_engine.query(query_str)

# レスポンスを出力
print(response)

CData Python Connector for GMO MakeShop の無料 30 日間トライアルをダウンロードして、リアルタイムデータへのシームレスなクエリを始めましょう。自然言語処理の力を体験し、データから貴重なインサイトを引き出してください。

はじめる準備はできましたか?

GMO MakeShop Connector のコミュニティライセンスをダウンロード:

 ダウンロード

詳細:

GMO MakeShop Icon GMO MakeShop Python Connector お問い合わせ

GMO MakeShop データ連携用のPython Connector ライブラリ。pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにAutify をシームレスに統合。