CData SSIS Components を使用して JSON のデータを Databricks にマイグレーション
Databricks は、大量のデータを簡単に処理、分析、可視化できる統合データ分析プラットフォームです。データエンジニアリング、データサイエンス、機械学習の機能を単一のプラットフォームに統合し、チームがコラボレーションしてデータからインサイトを得ることを容易にします。
CData SSIS Components は、SQL Server Integration Services を拡張し、さまざまなソースやデスティネーションからデータを簡単にインポート・エクスポートできるようにします。
この記事では、Databricks へのエクスポート時のデータ型マッピングの考慮事項を確認し、CData SSIS Components for JSON と Databricks を使用してJSON servicesを Databricks にマイグレーションする方法を説明します。
データ型マッピング
| Databricks スキーマ | CData スキーマ |
|---|---|
|
int, integer, int32 |
int |
|
smallint, short, int16 |
smallint |
|
double, float, real |
float |
|
date |
date |
|
datetime, timestamp |
datetime |
|
time, timespan |
time |
|
string, varchar |
長さ > 4000 の場合:nvarchar(max)、それ以外:nvarchar(length) |
|
long, int64, bigint |
bigint |
|
boolean, bool |
tinyint |
|
decimal, numeric |
decimal |
|
uuid |
nvarchar(length) |
|
binary, varbinary, longvarbinary |
binary(1000) または SQL Server 2000 以降は varbinary(max) |
特別な考慮事項
- String/VARCHAR: Databricks の String カラムは、カラムの長さによって異なるデータ型にマッピングされます。カラムの長さが 4000 を超える場合、カラムは nvarchar(max) にマッピングされます。それ以外の場合は、nvarchar(length) にマッピングされます。
- DECIMAL: Databricks は最大 38 桁の精度の DECIMAL 型をサポートしていますが、それを超えるソースカラムはロードエラーを引き起こす可能性があります。
前提条件
- Visual Studio 2022
- Visual Studio 2022 用 SQL Server Integration Services Projects 拡張機能
- CData SSIS Components for Databricks
- CData SSIS Components for JSON
プロジェクトの作成とコンポーネントの追加
-
Visual Studio を開き、新しい Integration Services プロジェクトを作成します。
- Control Flow 画面に新しい Data Flow Task を追加し、Data Flow Task を開きます。
-
Data Flow Task に CData JSON Source コントロールと CData Databricks Destination コントロールを追加します。
JSON ソースの設定
以下の手順に従って、JSON への接続に必要なプロパティを指定します。
-
CData JSON Source をダブルクリックしてソースコンポーネントエディタを開き、新しい接続を追加します。
-
CData JSON Connection Manager で接続プロパティを設定し、接続をテストして保存します。
データソースへの認証については、ヘルプドキュメントの「はじめに」を参照してください。CData 製品は、JSON API を双方向データベーステーブルとして、JSON ファイルを読み取り専用ビュー(ローカル ファイル、一般的なクラウドサービスに保存されているファイル、FTP サーバー)としてモデル化します。HTTP Basic、Digest、NTLM、OAuth、FTP などの主要な認証スキームがサポートされています。詳細はヘルプドキュメントの「はじめに」を参照してください。
URI を設定して認証値を入力したら、DataModel を設定してデータ表現とデータ構造をより厳密に一致させます。
DataModel プロパティは、データをどのようにテーブルに表現するかを制御するプロパティで、次の基本設定を切り替えます。
- Document(デフォルト):JSON データのトップレベルのドキュメントビューをモデル化します。CData 製品 は、ネストされたオブジェクト配列を集約されたJSON オブジェクトとして返します。
- FlattenedDocuments:ネストされた配列オブジェクトと親オブジェクトを、単一テーブルに暗黙的に結合します。
- Relational:階層データから個々の関連テーブルを返します。テーブルには、親ドキュメントにリンクする主キーと外部キーが含まれています。
リレーショナル表現の設定についての詳細は、ヘルプドキュメントの「JSON データのモデリング」を参照してください。また、以下の例で使用されているサンプルデータも確認できます。データには人や所有する車、それらの車に行われたさまざまなメンテナンスサービスのエントリが含まれています。
Amazon S3 内のJSON への接続
URI をバケット内のJSON ドキュメントに設定します。さらに、次のプロパティを設定して認証します。
- AWSAccessKey:AWS アクセスキー(username)に設定。
- AWSSecretKey:AWS シークレットキーに設定。
Box 内のJSON への接続
URI をJSON ファイルへのパスに設定します。Box へ認証するには、OAuth 認証標準を使います。 認証方法については、Box への接続 を参照してください。
Dropbox 内のJSON への接続
URI をJSON ファイルへのパスに設定します。Dropbox へ認証するには、OAuth 認証標準を使います。 認証方法については、Dropbox への接続 を参照してください。ユーザーアカウントまたはサービスアカウントで認証できます。ユーザーアカウントフローでは、以下の接続文字列で示すように、ユーザー資格情報の接続プロパティを設定する必要はありません。 URI=dropbox://folder1/file.json; InitiateOAuth=GETANDREFRESH; OAuthClientId=oauthclientid1; OAuthClientSecret=oauthcliensecret1; CallbackUrl=http://localhost:12345;
SharePoint Online SOAP 内のJSON への接続
URI をJSON ファイルを含むドキュメントライブラリに設定します。認証するには、User、Password、およびStorageBaseURL を設定します。
SharePoint Online REST 内のJSON への接続
URI をJSON ファイルを含むドキュメントライブラリに設定します。StorageBaseURL は任意です。指定しない場合、ドライバーはルートドライブで動作します。 認証するには、OAuth 認証標準を使用します。
FTP 内のJSON への接続
URI をJSON ファイルへのパスが付いたサーバーのアドレスに設定します。認証するには、User およびPassword を設定します。
Google Drive 内のJSON への接続
デスクトップアプリケーションからのGoogle への認証には、InitiateOAuth をGETANDREFRESH に設定して、接続してください。詳細はドキュメントの「Google Drive への接続」を参照してください。
-
接続を保存後、「Table or view」を選択し、Databricks にエクスポートするテーブルまたはビューを選択して、CData JSON Source Editor を閉じます。
Databricks デスティネーションの設定
JSON Source を設定したら、Databricks 接続を設定してカラムをマッピングします。
-
CData Databricks Destination をダブルクリックしてデスティネーションコンポーネントエディタを開き、新しい接続を追加します。
-
CData Databricks Connection Manager で接続プロパティを設定し、接続をテストして保存します。Databricks クラスターに接続するには、以下のようにプロパティを設定します。
注意:必要な値は、Databricks インスタンスで Clusters に移動し、目的のクラスターを選択して、Advanced Options の下にある JDBC/ODBC タブを選択することで確認できます。
- Server:Databricks クラスターの Server Hostname を設定します。
- HTTPPath:Databricks クラスターの HTTP Path を設定します。
- Token:個人用アクセストークンを設定します(この値は、Databricks インスタンスの User Settings ページに移動し、Access Tokens タブを選択することで取得できます)。
その他の便利な接続プロパティ
- QueryPassthrough: True に設定すると、クエリは Databricks に直接渡されます。
- ConvertDateTimetoGMT: True に設定すると、コンポーネントはローカルマシンの時刻ではなく、日時値を GMT に変換します。
- UseUploadApi: このプロパティを true に設定すると、Bulk INSERT 操作で大量のデータがある場合にパフォーマンスが向上します。
- UseCloudFetch: このオプションは、テーブルに 100 万件を超えるエントリがある場合にクエリ効率を向上させるために CloudFetch を使用するかどうかを指定します。
-
接続を保存後、Use a Table メニューでテーブルを選択し、Action メニューで Insert を選択します。
-
Column Mappings タブで、入力カラムからデスティネーションカラムへのマッピングを設定します。
プロジェクトの実行
これでプロジェクトを実行できます。SSIS Task の実行が完了すると、SQL テーブルのデータが選択したテーブルにエクスポートされます。