【MCP Server】LangChain からNetSuite のデータに連携しよう!

加藤龍彦
加藤龍彦
デジタルマーケティング
LangChain とCData Connect AI MCP Server で NetSuite へのリアルタイムアクセスを実現。自然言語クエリでデータ探索できる AI ワークフローを構築する方法をご紹介します。

LangChain は、開発者やデータエンジニア、AI 実践者が LLM、ツール、API、データコネクタを組み合わせて AI 活用アプリケーションやワークフローを構築するためのフレームワークです。LangChain と CData Connect AI を組み込みの MCP Server を通じて統合することで、ワークフローからライブの NetSuite にリアルタイムで簡単にアクセスして対話できるようになります。

CData Connect AI は、NetSuite のデータに接続するための専用クラウド間インターフェースを提供します。CData Connect AI Remote MCP Server により、Google ADK エージェントと NetSuiteの間でセキュアな通信が可能になります。これにより、ネイティブ対応データベースへのデータレプリケーションを必要とせずに、エージェントから NetSuite のデータの読み取りや操作を実行できます。CData Connect AIは最適化されたデータ処理機能を備えており、フィルタや JOIN を含むサポート対象のすべての SQL 操作を効率的に NetSuiteへ直接送信します。サーバーサイド処理を活用することで、要求されたNetSuite のデータ を迅速に取得できます。

この記事では、CData Connect AI での NetSuite 接続の設定、LangChain への MCP サーバーの登録、そして NetSuite をリアルタイムでクエリするワークフローの構築方法をご紹介します。

前提条件

NetSuite データ連携について

CData は、Oracle NetSuite のライブデータにアクセスし、統合するための最も簡単な方法を提供します。お客様は CData の接続機能を以下の目的で使用しています:

  • Standard、CRM、OneWorld を含む、すべてのエディションの NetSuite にアクセスできます。
  • SuiteTalk API(SOAP ベース)のすべてのバージョンと、SQL のように機能し、より簡単なデータクエリと操作を可能にする SuiteQL に接続できます。
  • Saved Searches のサポートにより、事前定義されたレポートとカスタムレポートにアクセスできます。
  • トークンベースおよび OAuth 2.0 で安全に認証でき、あらゆるユースケースで互換性とセキュリティを確保します。
  • SQL ストアドプロシージャを使用して、ファイルのアップロード・ダウンロード、レコードや関連付けのアタッチ・デタッチ、ロールの取得、追加のテーブルやカラム情報の取得、ジョブ結果の取得などの機能的なアクションを実行できます。

お客様は、Power BI や Excel などのお気に入りの分析ツールからライブ NetSuite データにアクセスするために CData ソリューションを使用しています。また、CData Sync を直接使用するか、Azure Data Factory などの他のアプリケーションとの CData の互換性を活用して、NetSuite データを包括的なデータベースやデータウェアハウスに統合しています。CData は、Oracle NetSuite のお客様が NetSuite からデータを取得し、NetSuite にデータをプッシュするアプリを簡単に作成できるよう支援し、他のソースからのデータを NetSuite と統合することを可能にしています。

当社の Oracle NetSuite ソリューションの詳細については、ブログをご覧ください:Drivers in Focus Part 2: Replicating and Consolidating ... NetSuite Accounting Data


はじめに


ステップ 1:LangChain 用の NetSuite 接続を設定する

それでは早速、LangChain から NetSuite にアクセスできるようにしていきましょう。まず、CData Connect AI で NetSuite 接続を作成します。この接続は、その後リモート MCP サーバーを通じて LangChain に公開されます。

  1. Connect AI にログインし、「Sources」をクリックして「+ Add Connection」をクリックします
  2. 利用可能なデータソースから「NetSuite」を選択します
  3. NetSuite に接続するために必要な認証情報を入力しましょう。

    NetSuiteへの接続

    NetSuite では、2種類のAPI でデータにアクセスできます。どちらのAPI を使用するかは、Schema 接続プロパティで以下のいずれかを選択して指定してください。

    • SuiteTalk は、NetSuite との通信に使用されるSOAP ベースの従来から提供されているサービスです。幅広いエンティティをサポートし、INSERT / UPDATE / DELETE の操作も対応しています。ただし、SuiteQL API と比べるとデータの取得速度が劣ります。また、サーバーサイドでのJOIN に対応していないため、これらの処理はCData 製品がクライアントサイドで実行します。
    • SuiteQL は、より新しいAPI です。JOIN、GROUP BY、集計、カラムフィルタリングをサーバーサイドで処理できるため、SuiteTalk よりもはるかに高速にデータを取得できます。ただし、NetSuite データへのアクセスは読み取り専用となります。

    データの取得のみが目的でしたらSuiteQL をお勧めします。データの取得と変更の両方が必要な場合は、SuiteTalk をお選びください。

    NetSuite への認証

    CData 製品では、以下の認証方式がご利用いただけます。

    • トークンベース認証(TBA)はOAuth1.0に似た仕組みです。2020.2以降のSuiteTalk とSuiteQL の両方で利用できます。
    • OAuth 2.0 認証(OAuth 2.0 認可コードグラントフロー)は、SuiteQL でのみご利用いただけます。
    • OAuth JWT 認証は、OAuth2.0 クライアント認証フローの一つで、クライアント認証情報を含むJWT を使用してNetSuite データへのアクセスを要求します。

    トークンベース認証(OAuth1.0)

    トークンベース認証(TBA)は、基本的にOAuth 1.0 の仕組みです。この認証方式はSuiteTalk とSuiteQL の両方でサポートされています。管理者権限をお持ちの方がNetSuite UI 内でOAuthClientId、OAuthClientSecret、OAuthAccessToken、OAuthAccessTokenSecret を直接作成することで設定できます。 NetSuite UI でのトークン作成手順については、ヘルプドキュメントの「はじめに」セクションをご参照ください。

    アクセストークンを作成したら、以下の接続プロパティを設定して接続してみましょう。

    • AuthScheme = Token
    • AccountId = 接続先のアカウント
    • OAuthClientId = アプリケーション作成時に表示されるコンシューマーキー
    • OAuthClientSecret = アプリケーション作成時に表示されるコンシューマーシークレット
    • OAuthAccessToken = アクセストークン作成時のトークンID
    • OAuthAccessTokenSecret = アクセストークン作成時のトークンシークレット

    その他の認証方法については、ヘルプドキュメントの「はじめに」をご確認ください。

  4. 「Create & Test」をクリックします
  5. 認証が完了したら、NetSuite 接続の「Permissions」タブを開き、必要に応じてユーザーベースの権限を設定します

パーソナルアクセストークン(PAT)を生成する

LangChain は、アカウントのメールアドレスとパーソナルアクセストークン(PAT)を使用して Connect AI に認証します。アクセス制御の粒度を維持するために、統合ごとに個別の PAT を作成することをおすすめします。

  1. Connect AI で、右上の歯車アイコンを選択して「Settings」を開きます
  2. 「Access Tokens」で、「Create PAT」を選択します
  3. トークンのわかりやすい名前を付けて、「Create」を選択します
  4. トークンをコピーして安全に保管してください。PAT は作成時にのみ表示されます

これで NetSuite 接続の設定と PAT の生成が完了しました。LangChain から CData MCP サーバーを通じて NetSuite に接続する準備が整いました。

注:Connect AI の「Integrations」セクションの「LangChain」から PAT を生成することもできます。「Connect」→「 Create PAT」をクリックするだけで生成できます。

ステップ 2:LangChain で MCP サーバーに接続する

続いて、LangChain をCData Connect AI のリモートMCP サーバー に接続していきましょう。推論に OpenAI(ChatGPT)を使用するには、MCP サーバーエンドポイントと認証情報を config.py ファイルで設定します。これらを設定することで、LangChain が MCP サーバーツールを呼び出せるようになり、OpenAI が自然言語での推論を処理してくれます。

  1. LangChain MCP 用のフォルダを作成します
  2. フォルダ内にconfig.pylangchain.py の2つの Python ファイルを作成します。
  3. config.py で、MCP サーバーの認証と URL を定義する Config クラスを作成します。Base64 エンコードされた CData Connect AI のユーザー名と PAT(前提条件で取得したもの)を指定する必要があります。
     
    class Config: 
          MCP_BASE_URL = "https://mcp.cloud.cdata.com/mcp"   # MCP Server の URL 
          MCP_AUTH = "base64encoded(EMAIL:PAT)"   # Base64 エンコードされた Connect AI の Email:PAT 
    

    注:Base64 エンコードツールを使用して、MCP_AUTH の Base64 エンコード版を作成できます。

  4. langchain.py で、MCP サーバーと MCP クライアントを設定して、ツールとプロンプトを呼び出します:
     
    """ 
    LangChain ReAct エージェントと CData Connect AI MCP サーバーを統合します。
    このスクリプトは、ツールの取得、フィルタリング、LLM を使用したエージェントベースの推論を実行します。
    """ 
    
    import asyncio 
    from langchain_mcp_adapters.client import MultiServerMCPClient 
    from langchain_openai import ChatOpenAI 
    from langgraph.prebuilt import create_react_agent 
    from config import Config 
    
    async def main(): 
        # 1 つ以上のサーバー URL で MCP クライアントを初期化
        mcp_client = MultiServerMCPClient( 
            connections={ 
                "default": {  # お好きな名前でOKです
                    "transport": "streamable_http", 
                    "url": Config.MCP_BASE_URL, 
                    "headers": {"Authorization": f"Basic {Config.MCP_AUTH}"}, 
                } 
            } 
        ) 
    
        # サーバーによって公開されているリモート MCP ツールを読み込む
        all_mcp_tools = await mcp_client.get_tools() 
        print("検出された MCP ツール:", [tool.name for tool in all_mcp_tools]) 
    
        # ReAct スタイルのエージェントを作成して実行
        llm = ChatOpenAI( 
            model="gpt-4o",  
            temperature=0.2, 
            api_key="YOUR_OPEN_API_KEY"  # ここに OpenAI API キーを使用します(https://platform.openai.com/ で確認できます)
        ) 
    
        agent = create_react_agent(llm, all_mcp_tools) 
    
        user_prompt = "[rootadoname]1 で利用可能なテーブルはいくつありますか?"  # 必要に応じてプロンプトを変更してください
        print(f"
    ユーザープロンプト: {user_prompt}") 
    
        # エージェントに MCP ツールを使用するように求めるプロンプトを送信
        response = await agent.ainvoke( 
            {"messages": [{"role": "user", "content": (user_prompt),}]} 
        ) 
    
        # エージェントの最終応答を出力
        final_msg = response["messages"][-1].content 
        print("エージェントの最終応答:", final_msg) 
    
    if __name__ == "__main__": 
        asyncio.run(main()) 
    

ステップ 3:LangChain と LangGraph パッケージをインストールする

それでは、LangChain を CData Connect AI MCP と組み合わせて使用し、推論に OpenAI を統合するために必要なPython パッケージをインストールしていきましょう。

プロジェクトのターミナルで次のコマンドを実行してください。

 
pip install langchain-mcp-adapters langchain-openai langgraph 

ステップ 4:LangChain を使用して NetSuite にプロンプトを送信する(MCP サーバー経由)

  1. インストールが完了したら、
    python langchain.py
    を実行してスクリプトを実行します
  2. スクリプトは MCP サーバーに接続し、接続されたデータをクエリするために利用可能な CData Connect AI MCP ツールを検出します
  3. プロンプトを入力します(例:「NetSuite で利用可能なテーブルはいくつありますか?」)
  4. それに応じて、エージェントが結果を返します

CData Connect AI でビジネスシステムのデータ活用を今すぐスタート

いかがでしたか?LangChain から NetSuite へのデータ接続が簡単に完了したのではないでしょうか。業務に使えそう、と感じてくださった方は、14 日間の無償トライアルで AI ツールからビジネスシステムへのリアルタイムデータ接続をぜひお試しください。

はじめる準備はできましたか?

CData Connect AI の詳細、または無料トライアルにお申し込みください:

無料トライアル お問い合わせ