LlamaIndex を使って Python でNetSuite データに自然言語でクエリを実行する方法

Jerod Johnson
Jerod Johnson
Senior Technology Evangelist
Python で LlamaIndex を使用してリアルタイムのNetSuite のデータに自然言語でクエリを実行。

CData Python Connector for NetSuite を使用して、NetSuite からリアルタイムデータへのクエリを開始しましょう。LlamaIndex と AI の力を活用して、複雑な SQL クエリを書くことなく、シンプルな自然言語でインサイトを取得できます。意思決定を強化するリアルタイムデータアクセスのメリットを享受しながら、既存の Python アプリケーションと簡単に統合できます。

CData Python Connector は、組み込みの最適化されたデータ処理により、Python でリアルタイムのNetSuite のデータを操作する際に比類のないパフォーマンスを提供します。Python から複雑な SQL クエリを発行すると、ドライバーはフィルターや集計などのサポートされた SQL 操作を直接 NetSuite にプッシュし、埋め込み SQL エンジンを使用してサポートされていない操作(多くの場合 SQL 関数や JOIN 操作)をクライアント側で処理します。

トレンド分析、レポート作成、データの可視化など、CData Python Connector を使用すれば、リアルタイムのデータソースの可能性を最大限に活用できます。

NetSuite データ連携について

CData は、Oracle NetSuite のライブデータにアクセスし、統合するための最も簡単な方法を提供します。お客様は CData の接続機能を以下の目的で使用しています:

  • Standard、CRM、OneWorld を含む、すべてのエディションの NetSuite にアクセスできます。
  • SuiteTalk API(SOAP ベース)のすべてのバージョンと、SQL のように機能し、より簡単なデータクエリと操作を可能にする SuiteQL に接続できます。
  • Saved Searches のサポートにより、事前定義されたレポートとカスタムレポートにアクセスできます。
  • トークンベースおよび OAuth 2.0 で安全に認証でき、あらゆるユースケースで互換性とセキュリティを確保します。
  • SQL ストアドプロシージャを使用して、ファイルのアップロード・ダウンロード、レコードや関連付けのアタッチ・デタッチ、ロールの取得、追加のテーブルやカラム情報の取得、ジョブ結果の取得などの機能的なアクションを実行できます。

お客様は、Power BI や Excel などのお気に入りの分析ツールからライブ NetSuite データにアクセスするために CData ソリューションを使用しています。また、CData Sync を直接使用するか、Azure Data Factory などの他のアプリケーションとの CData の互換性を活用して、NetSuite データを包括的なデータベースやデータウェアハウスに統合しています。CData は、Oracle NetSuite のお客様が NetSuite からデータを取得し、NetSuite にデータをプッシュするアプリを簡単に作成できるよう支援し、他のソースからのデータを NetSuite と統合することを可能にしています。

当社の Oracle NetSuite ソリューションの詳細については、ブログをご覧ください:Drivers in Focus Part 2: Replicating and Consolidating ... NetSuite Accounting Data


はじめに


概要

LlamaIndex を使用して、CData Python Connector forNetSuite のデータでリアルタイムデータにクエリを実行する方法の概要です:

  • ロギング、データベース接続、NLP に必要な Python、CData、LlamaIndex モジュールをインポートします。
  • アプリケーションからの API リクエストを認証するための OpenAI API キーを取得します。
  • CData Python Connector を使用してリアルタイムのNetSuite のデータに接続します。
  • OpenAI を初期化し、自然言語クエリを処理するための SQLDatabase と NLSQLTableQueryEngine のインスタンスを作成します。
  • クエリエンジンと特定のデータベースインスタンスを作成します。
  • 自然言語クエリ(例:「最も稼いでいる従業員は誰ですか?」)を実行して、データベースから構造化されたレスポンスを取得します。
  • 取得したデータを分析してインサイトを得て、データドリブンな意思決定に役立てます。

必要なモジュールのインポート

CData、データベース接続、自然言語クエリに必要なモジュールをインポートします。

import os
import logging
import sys

# ロギングの設定
logging.basicConfig(stream=sys.stdout, level=logging.INFO, force=True)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))

# CData と LlamaIndex に必要なモジュールをインポート
import cdata.netsuite as mod
from sqlalchemy import create_engine
from llama_index.core.query_engine import NLSQLTableQueryEngine
from llama_index.core import SQLDatabase
from llama_index.llms.openai import OpenAI

OpenAI API キーの設定

OpenAI の言語モデルを使用するには、API キーを環境変数として設定する必要があります。システムの環境変数で OpenAI API キーが利用可能であることを確認してください。

# 環境変数から OpenAI API キーを取得
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]

''または、コード内で直接 API キーを追加することもできます(ただし、セキュリティリスクのため、本番環境ではこの方法は推奨されません):''

# API キーを直接設定(本番使用には非推奨)
OPENAI_API_KEY = "your-api-key-here"

データベース接続の作成

次に、必要な接続プロパティを含む接続文字列を使用して、CData Connector で NetSuite への接続を確立します。

NetSuiteへの接続

NetSuite では、2種類のAPI でデータにアクセスできます。どちらのAPI を使用するかは、Schema 接続プロパティで以下のいずれかを選択して指定してください。

  • SuiteTalk は、NetSuite との通信に使用されるSOAP ベースの従来から提供されているサービスです。幅広いエンティティをサポートし、INSERT / UPDATE / DELETE の操作も対応しています。ただし、SuiteQL API と比べるとデータの取得速度が劣ります。また、サーバーサイドでのJOIN に対応していないため、これらの処理はCData 製品がクライアントサイドで実行します。
  • SuiteQL は、より新しいAPI です。JOIN、GROUP BY、集計、カラムフィルタリングをサーバーサイドで処理できるため、SuiteTalk よりもはるかに高速にデータを取得できます。ただし、NetSuite データへのアクセスは読み取り専用となります。

データの取得のみが目的でしたらSuiteQL をお勧めします。データの取得と変更の両方が必要な場合は、SuiteTalk をお選びください。

NetSuite への認証

CData 製品では、以下の認証方式がご利用いただけます。

  • トークンベース認証(TBA)はOAuth1.0に似た仕組みです。2020.2以降のSuiteTalk とSuiteQL の両方で利用できます。
  • OAuth 2.0 認証(OAuth 2.0 認可コードグラントフロー)は、SuiteQL でのみご利用いただけます。
  • OAuth JWT 認証は、OAuth2.0 クライアント認証フローの一つで、クライアント認証情報を含むJWT を使用してNetSuite データへのアクセスを要求します。

トークンベース認証(OAuth1.0)

トークンベース認証(TBA)は、基本的にOAuth 1.0 の仕組みです。この認証方式はSuiteTalk とSuiteQL の両方でサポートされています。管理者権限をお持ちの方がNetSuite UI 内でOAuthClientId、OAuthClientSecret、OAuthAccessToken、OAuthAccessTokenSecret を直接作成することで設定できます。 NetSuite UI でのトークン作成手順については、ヘルプドキュメントの「はじめに」セクションをご参照ください。

アクセストークンを作成したら、以下の接続プロパティを設定して接続してみましょう。

  • AuthScheme = Token
  • AccountId = 接続先のアカウント
  • OAuthClientId = アプリケーション作成時に表示されるコンシューマーキー
  • OAuthClientSecret = アプリケーション作成時に表示されるコンシューマーシークレット
  • OAuthAccessToken = アクセストークン作成時のトークンID
  • OAuthAccessTokenSecret = アクセストークン作成時のトークンシークレット

その他の認証方法については、ヘルプドキュメントの「はじめに」をご確認ください。

NetSuite への接続

# CData Python Connector for NetSuite を使用してデータベースエンジンを作成
engine = create_engine("cdata_netsuite_2:///?User=AccountId=XABC123456;Schema=SuiteTalk;AuthScheme=Token;OAuthClientId=MyOAuthClientId;OAuthClientSecret=MyOAuthClientSecret;OAuthAccessToken=MyOAuthAccessToken;OAuthAccessTokenSecret=MyOAuthAccessTokenSecret;")

OpenAI インスタンスの初期化

OpenAI 言語モデルのインスタンスを作成します。ここで、temperature やモデルバージョンなどのパラメータを指定できます。

# OpenAI 言語モデルインスタンスを初期化
llm = OpenAI(temperature=0.0, model="gpt-3.5-turbo")

データベースとクエリエンジンの設定

SQL データベースとクエリエンジンを設定します。NLSQLTableQueryEngine を使用すると、SQL データベースに対して自然言語クエリを実行できます。

# SQL データベースインスタンスを作成
sql_db = SQLDatabase(engine)  # すべてのテーブルを含む

# 自然言語 SQL クエリ用のクエリエンジンを初期化
query_engine = NLSQLTableQueryEngine(sql_database=sql_db)

クエリの実行

これで、リアルタイムのデータソースに対して自然言語クエリを実行できます。この例では、最も稼いでいる従業員上位 2 名をクエリします。

# クエリ文字列を定義
query_str = "Who are the top earning employees?"

# クエリエンジンからレスポンスを取得
response = query_engine.query(query_str)

# レスポンスを出力
print(response)

CData Python Connector for NetSuite の無料 30 日間トライアルをダウンロードして、リアルタイムデータへのシームレスなクエリを始めましょう。自然言語処理の力を体験し、データから貴重なインサイトを引き出してください。

はじめる準備はできましたか?

NetSuite Connector のコミュニティライセンスをダウンロード:

 ダウンロード

詳細:

NetSuite Icon NetSuite Python Connector お問い合わせ

NetSuite へのデータ連携用のPython Connecotr ライブラリ。 pandas、SQLAlchemy、Dash、petl などの主要なPython ツールにNetSuite をシームレスに統合。