Azure Databricks でPaylocity のデータに接続してデータ処理を行う方法
Databricks は、Apache Spark によるデータ処理機能を提供するクラウドベースのサービスです。CData JDBC ドライバと組み合わせることで、Databricks を使用してリアルタイムPaylocity のデータのデータエンジニアリングとデータサイエンスを実行できます。この記事では、Azure で CData JDBC ドライバをホストし、Databricks からリアルタイムPaylocity のデータに接続してデータを処理する方法を説明します。
最適化されたデータ処理機能を組み込んだ CData JDBC ドライバは、リアルタイムPaylocity のデータとのインタラクションにおいて卓越したパフォーマンスを発揮します。Paylocity に対して複雑な SQL クエリを発行すると、ドライバーはフィルタや集計などのサポートされている SQL 操作を直接Paylocityにプッシュし、サポートされていない操作(主に SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。動的メタデータクエリ機能により、ネイティブのデータ型を使用してPaylocity のデータの操作・分析が可能です。
CData JDBC ドライバを Azure にインストール
Databricks でリアルタイムPaylocity のデータを操作するには、Azure Data Lake Storage(ADLS)を通じてドライバーをインストールします。(以前のバージョンの記事で説明していた DBFS を介した接続方法は非推奨となっていますが、廃止日は公開されていません。)
- JDBC JAR ファイルを任意の Blob コンテナにアップロードします(例:「databrickslibraries」ストレージアカウントの「jdbcjars」コンテナ)。
- ストレージアカウントから「セキュリティとネットワーク」を展開し、「アクセスキー」をクリックしてアカウントキーを取得します。使用するキーを表示してコピーしてください。
- コンテナに移動し、JAR を保存している特定のコンテナを開き、JDBC JAR ファイルのエントリを選択して JAR ファイルの URL を取得します。ファイルの詳細が開き、URL をクリップボードにコピーするボタンがあります。この値は以下のようになります(「blob」の部分はストレージアカウントの種類によって異なる場合があります):
https://databrickslibraries.blob.core.windows.net/jdbcjars/cdata.jdbc.salesforce.jar
- Databricks クラスターの「Configuration」タブで「Edit」ボタンをクリックし、「Advanced options」を展開します。そこで、以下の Spark オプション(JAR URL のドメイン名から派生)に、コピーしたアカウントキーを値として追加し、「Confirm」をクリックします:
spark.hadoop.fs.azure.account.key.databrickslibraries.blob.core.windows.net
- Databricks クラスターの「Libraries」タブで「Install new」をクリックし、ADLS オプションを選択します。ドライバー JAR の ABFSS URL(これも JAR URL のドメイン名から派生)を指定し、「Install」をクリックします。ABFSS URL は以下のようになります:
abfss://[email protected]/cdata.jdbc.salesforce.jar
Databricks からPaylocityに接続
JAR ファイルがインストールされたら、Databricks でリアルタイムPaylocity のデータを操作する準備が整いました。まず、ワークスペースで新しいノートブックを作成します。ワークブックに名前を付け、言語として Python が選択されていることを確認し(デフォルトで選択されているはずです)、「Connect」をクリックして「General Compute」から JDBC ドライバーをインストールしたクラスターを選択します(デフォルトで選択されているはずです)。
Paylocityへの接続を設定
JDBC ドライバのクラスを参照し、JDBC URL で使用する接続文字列を構築してPaylocityに接続します。また、JDBC URL に RTK プロパティを設定する必要があります(Beta ドライバーを使用している場合を除く)。このプロパティの設定方法については、インストールに含まれるライセンスファイルを参照してください。
driver = "cdata.jdbc.paylocity.PaylocityDriver" url = "jdbc:paylocity:RTK=5246...;OAuthClientID=YourClientId;OAuthClientSecret=YourClientSecret;RSAPublicKey=YourRSAPubKey;Key=YourKey;IV=YourIV;"
組み込みの接続文字列デザイナー
JDBC URL の構築には、Paylocity JDBC Driver に組み込まれている接続文字列デザイナーを使用できます。JAR ファイルをダブルクリックするか、コマンドラインから JAR ファイルを実行してください。
java -jar cdata.jdbc.paylocity.jar
接続プロパティを入力し、接続文字列をクリップボードにコピーします。
Paylocity への接続を確立するには以下を設定します。
- RSAPublicKey:Paylocity アカウントでRSA 暗号化が有効になっている場合は、Paylocity に関連付けられたRSA キーを設定。
このプロパティは、Insert およびUpdate ステートメントを実行するために必須です。この機能が無効になっている場合は必須ではありません。
- UseSandbox:サンドボックスアカウントを使用する場合はTrue に設定。
- CustomFieldsCategory:Customfields カテゴリに設定。これは、IncludeCustomFields がtrue に設定されている場合は必須です。デフォルト値はPayrollAndHR です。
- Key:Paylocity の公開鍵で暗号化されたAES 共通鍵(base 64 エンコード)。これはコンテンツを暗号化するためのキーです。
Paylocity は、RSA 復号化を使用してAES 鍵を復号化します。
これはオプションのプロパティで、IV の値が指定されていない場合、ドライバーは内部でキーを生成します。 - IV:コンテンツを暗号化するときに使用するAES IV(base 64 エンコード)。これはオプションのプロパティで、Key の値が指定されていない場合、ドライバーは内部でIV を生成します。
OAuth
OAuth を使用してPaylocity で認証する必要があります。OAuth では認証するユーザーにブラウザでPaylocity との通信を要求します。詳しくは、ヘルプドキュメントのOAuth セクションを参照してください。
Pay Entry API
Pay Entry API はPaylocity API の他の部分と完全に分離されています。個別のクライアントID とシークレットを使用し、アカウントへのアクセスを許可するにはPaylocity から明示的にリクエストする必要があります。 Pay Entry API を使用すると、個々の従業員の給与情報を自動的に送信できます。 Pay Entry API によって提供されるものの性質が非常に限られているため、CData では個別のスキーマを提供しないことを選択しましたが、UsePayEntryAPI 接続プロパティを介して有効にできます。
UsePayEntryAPI をtrue
に設定する場合は、CreatePayEntryImportBatch、MergePayEntryImportBatch、Input_TimeEntry、およびOAuth
ストアドプロシージャのみ利用できることに注意してください。
製品のその他の機能を使用しようとするとエラーが発生します。また、OAuthAccessToken
を個別に保存する必要があります。これは、この接続プロパティを使用するときに異なるOAuthSettingsLocation を設定することを意味します。
Paylocity のデータの読み込み
接続を設定したら、CData JDBC ドライバと接続情報を使用してPaylocity のデータをデータフレームとして読み込むことができます。
remote_table = spark.read.format ( "jdbc" ) \ .option ( "driver" , driver) \ .option ( "url" , url) \ .option ( "dbtable" , "Employee") \ .load ()
Paylocity のデータの表示
読み込んだPaylocity のデータを display 関数で確認してみましょう。
display (remote_table.select ("FirstName"))
Azure Databricks でPaylocity のデータを分析
Databricks SparkSQL でデータを処理したい場合は、読み込んだデータを一時ビューとして登録します。
remote_table.createOrReplaceTempView ( "SAMPLE_VIEW" )
以下の SparkSQL で分析用のPaylocity のデータを取得できます。
result = spark.sql("SELECT FirstName, LastName FROM SAMPLE_VIEW WHERE SAMPLE_VIEWId = '1234'")
Paylocity からのデータは、対象のノートブック内でのみ利用可能です。他のユーザーと共有したい場合は、テーブルとして保存してください。
remote_table.write.format ( "parquet" ) .saveAsTable ( "SAMPLE_TABLE" )
CData JDBC Driver for Paylocity の30日間の無償トライアルをダウンロードして、Azure Databricks でリアルタイムPaylocity のデータを活用してみてください。ご不明な点があれば、サポートチームまでお気軽にお問い合わせください。