CData Connect AI を使用してRelevance AI でリアルタイムの Presto のデータにアクセスするエージェントを構築
Relevance AI は、自然言語推論を活用した自律的なワークフローを組織が作成できるAI 自動化およびエージェント構築プラットフォームです。ユーザーは、API、データベース、サードパーティシステムと連携して日常のビジネスタスクやデータ操作を完了するエージェントを視覚的に設計できます。
Relevance AI を組み込みのMCP(Model Context Protocol)サーバーを介してCData Connect AI と統合することで、エージェントはリアルタイムでPresto のデータをクエリ、要約、操作できるようになります。この接続により、Relevance AI のインテリジェントなワークフローエンジンとCData Connect AI のガバナンスされたエンタープライズ接続がブリッジされ、すべてのクエリが手動でデータをエクスポートすることなく、承認されたソースに対してセキュアに実行されます。
この記事では、Connect AI で Presto への接続を設定し、Relevance AI にCData MCP サーバーを登録し、リアルタイムのPresto のデータと連携するエージェントを構築する手順を説明します。
Presto データ連携について
CData を使用すれば、Trino および Presto SQL エンジンのライブデータへのアクセスと統合がこれまでになく簡単になります。お客様は CData の接続機能を以下の目的で利用しています:
- Trino v345 以降(旧 PrestoSQL)および Presto v0.242 以降(旧 PrestoDB)のデータにアクセスできます。
- Trino または Presto インスタンスの基盤となるすべてのデータに対して読み取り・書き込みアクセスができます。
- 最大スループットのための最適化されたクエリ生成。
Presto と Trino により、ユーザーは単一のエンドポイントを通じてさまざまな基盤データソースにアクセスできます。CData の接続と組み合わせることで、ユーザーはインスタンスへの純粋な SQL-92 アクセスを取得し、ビジネスデータをデータウェアハウスに統合したり、Power BI や Tableau などのお気に入りのツールからライブデータに直接簡単にアクセスしたりできます。
多くの場合、CData のライブ接続は、ツールで利用可能なネイティブのインポート機能を上回ります。あるお客様は、レポートに必要なデータセットのサイズが大きいため、Power BI を効果的に使用できませんでした。同社が CData Power BI Connector for Presto を導入したところ、DirectQuery 接続モードを使用してリアルタイムでレポートを生成できるようになりました。
はじめに
ステップ1:Relevance AI 用に Presto への接続を設定
Relevance AI から Presto への接続は、CData Connect AI のリモートMCP サーバーによって実現されます。Relevance AI からPresto のデータを操作するには、まずCData Connect AI で Presto 接続を作成し設定します。
- Connect AI にログインして「Sources」をクリックし、 Add Connection をクリックします
- Add Connection パネルからPresto を選択します
-
Presto への接続に必要な認証プロパティを入力します。
Presto への接続には、まずはServer およびPort を接続プロパティとして設定します。それ以外の追加項目は接続方式によって異なります。
TLS/SSL を有効化するには、UseSSL をTRUE に設定します。
LDAP で認証
LDAP で認証するには、次の接続プロパティを設定します:
- AuthScheme: LDAP に設定。
- User: LDAP で接続するユーザー名。
- Password: LDAP で接続するユーザーのパスワード。
Kerberos 認証
KERBEROS 認証を使う場合には、以下を設定します:
- AuthScheme: KERBEROS に設定。
- KerberosKDC: 接続するユーザーのKerberos Key Distribution Center (KDC) サービス。
- KerberosRealm: 接続するユーザーのKerberos Realm 。
- KerberosSPN: Kerberos Domain Controller のService Principal Name。
- KerberosKeytabFile: Kerberos principals とencrypted keys を含むKeytab file。
- User: Kerberos のユーザー。
- Password: Kerberos で認証するユーザーのパスワード。
- Save & Test をクリックします
- Permissions タブに移動し、ユーザーベースの権限を更新します
Personal Access Token の追加
Personal Access Token(PAT)は、Relevance AI からConnect AI への接続を認証するために使用されます。きめ細かなアクセス制御を維持するために、統合ごとに個別のPAT を作成することをお勧めします。
- Connect AI アプリの右上にある歯車アイコン()をクリックしてSettings を開きます
- Settings ページで「Access Tokens」セクションに移動し、 Create PAT をクリックします
- PAT にわかりやすい名前を付けてCreate をクリックします
- トークンが表示されたらコピーして安全に保存してください。再度表示されることはありません
Presto 接続の設定とPAT の生成が完了したら、Relevance AI はCData MCP サーバーを介してPresto のデータに接続できるようになります。
ステップ2:Relevance AI で接続を設定
CData Connect AI のMCP エンドポイントと認証情報をRelevance AI に登録して、エージェントがConnect AI からリアルタイムデータを呼び出せるようにします。
- Relevance AI にサインインし、アカウントをお持ちでない場合は作成します
- サイドバーからAgents に移動し、New Agent をクリックします
- Build from scratch を選択し、エージェントに名前を付けます(例:CData MCP Server)
- エージェントエディター内でAdvanced を選択し、MCP Server タブに切り替えます
- + Add Remote MCP Tools をクリックします
- 表示されるダイアログで、以下のようにフィールドを入力します:
- URL: https://mcp.cloud.cdata.com/mcp
- Label: 任意のカスタムラベル(例: cdata_mcp_server)
- Authentication: Custom headers を選択します
- ヘッダーのkey:value ペアを追加します。メールアドレスとPAT をemail:PAT の形式で組み合わせ、その文字列をBase64 でエンコードし、先頭にBasic を付けます
- Key: Authorization
- Value: Basic base64(email:PAT)
Connect をクリックして接続を確立します。Relevance AI が資格情報を検証し、エージェントで使用するためにCData Connect AI MCP サーバーを登録します。
ステップ3:リアルタイムの Presto のデータを使用してRelevance AI エージェントを構築・実行
- エージェントのRun タブに切り替えます
- タスクを入力します。例:「ServiceNow から最新の5件のインシデントをリストして」
- エージェントがMCP エンドポイント経由でConnect AI にクエリを実行し、Presto のデータ からのリアルタイム結果を表示します
接続が完了すると、Relevance AI エージェントはCData Connect AI MCP サーバーを介して、リアルタイムのPresto のデータに対してクエリの発行、レコードの取得、AI 駆動のタスクの実行が可能になります。
CData Connect AI の入手
クラウドアプリケーションから300以上のSaaS、Big Data、NoSQL ソースにアクセスするために、CData Connect AI を今すぐお試しください!