Azure Databricks でREST のデータに接続してデータ処理を行う方法

Jerod Johnson
Jerod Johnson
Senior Technology Evangelist
CData JDBC Driver、Azure、Databricks を使用して、リアルタイムREST のデータのデータエンジニアリングとデータサイエンスを実行。

Databricks は、Apache Spark によるデータ処理機能を提供するクラウドベースのサービスです。CData JDBC ドライバと組み合わせることで、Databricks を使用してリアルタイムREST のデータのデータエンジニアリングとデータサイエンスを実行できます。この記事では、Azure で CData JDBC ドライバをホストし、Databricks からリアルタイムREST のデータに接続してデータを処理する方法を説明します。

最適化されたデータ処理機能を組み込んだ CData JDBC ドライバは、リアルタイムREST のデータとのインタラクションにおいて卓越したパフォーマンスを発揮します。REST に対して複雑な SQL クエリを発行すると、ドライバーはフィルタや集計などのサポートされている SQL 操作を直接RESTにプッシュし、サポートされていない操作(主に SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。動的メタデータクエリ機能により、ネイティブのデータ型を使用してREST のデータの操作・分析が可能です。

CData JDBC ドライバを Azure にインストール

Databricks でリアルタイムREST のデータを操作するには、Azure Data Lake Storage(ADLS)を通じてドライバーをインストールします。(以前のバージョンの記事で説明していた DBFS を介した接続方法は非推奨となっていますが、廃止日は公開されていません。

  1. JDBC JAR ファイルを任意の Blob コンテナにアップロードします(例:「databrickslibraries」ストレージアカウントの「jdbcjars」コンテナ)。
  2. ストレージアカウントから「セキュリティとネットワーク」を展開し、「アクセスキー」をクリックしてアカウントキーを取得します。使用するキーを表示してコピーしてください。
  3. コンテナに移動し、JAR を保存している特定のコンテナを開き、JDBC JAR ファイルのエントリを選択して JAR ファイルの URL を取得します。ファイルの詳細が開き、URL をクリップボードにコピーするボタンがあります。この値は以下のようになります(「blob」の部分はストレージアカウントの種類によって異なる場合があります):
    https://databrickslibraries.blob.core.windows.net/jdbcjars/cdata.jdbc.salesforce.jar
  4. Databricks クラスターの「Configuration」タブで「Edit」ボタンをクリックし、「Advanced options」を展開します。そこで、以下の Spark オプション(JAR URL のドメイン名から派生)に、コピーしたアカウントキーを値として追加し、「Confirm」をクリックします: spark.hadoop.fs.azure.account.key.databrickslibraries.blob.core.windows.net
  5. Databricks クラスターの「Libraries」タブで「Install new」をクリックし、ADLS オプションを選択します。ドライバー JAR の ABFSS URL(これも JAR URL のドメイン名から派生)を指定し、「Install」をクリックします。ABFSS URL は以下のようになります:
    abfss://[email protected]/cdata.jdbc.salesforce.jar

Databricks からRESTに接続

JAR ファイルがインストールされたら、Databricks でリアルタイムREST のデータを操作する準備が整いました。まず、ワークスペースで新しいノートブックを作成します。ワークブックに名前を付け、言語として Python が選択されていることを確認し(デフォルトで選択されているはずです)、「Connect」をクリックして「General Compute」から JDBC ドライバーをインストールしたクラスターを選択します(デフォルトで選択されているはずです)。

RESTへの接続を設定

JDBC ドライバのクラスを参照し、JDBC URL で使用する接続文字列を構築してRESTに接続します。また、JDBC URL に RTK プロパティを設定する必要があります(Beta ドライバーを使用している場合を除く)。このプロパティの設定方法については、インストールに含まれるライセンスファイルを参照してください。

driver = "cdata.jdbc.rest.RESTDriver"
url = "jdbc:rest:RTK=5246...;DataModel=Relational;URI=C:/people.xml;Format=XML;"

組み込みの接続文字列デザイナー

JDBC URL の構築には、REST JDBC Driver に組み込まれている接続文字列デザイナーを使用できます。JAR ファイルをダブルクリックするか、コマンドラインから JAR ファイルを実行してください。

java -jar cdata.jdbc.rest.jar

接続プロパティを入力し、接続文字列をクリップボードにコピーします。

データソースへの認証については、データプロバイダーのヘルプドキュメントの「はじめに」を参照してください: データプロバイダーはREST API を双方向データベーステーブルとして、XML/JSON ファイル(ローカルファイル、一般的なクラウドサービスに保存されているファイル、FTP サーバー)を読み取り専用のビューとしてモデル化します。HTTP Basic、Digest、NTLM、OAuth、FTP などの主要な認証スキームがサポートされています。認証についての詳細は、ヘルプドキュメントの「はじめに」を参照してください。

URI を設定し、認証値を指定したら、Format を"XML" または"JSON" に設定して、データ表現をデータ構造により厳密に一致させるようにDataModel を設定します。

DataModel プロパティは、データをどのようにテーブルに表現するかを制御するプロパティで、以下の基本的な設定を切り替えます。

  • Document (デフォルト):REST データのトップレベルのドキュメントビューをモデル化します。データプロバイダーはネストされたエレメントをデータの集計として返します。
  • FlattenedDocuments:ネストされたドキュメントとその親を単一テーブルとして暗黙的に結合します。
  • Relational:階層データから個々の関連テーブルを返します。テーブルには、親ドキュメントにリンクする主キーと外部キーが含まれます。

リレーショナル表現の構成について詳しくは、「REST データのモデル化」を参照してください。次の例で使用されているサンプルデータもあります。データには、人、所有している車、およびそれらの車で行われたさまざまなメンテナンスサービスのエントリが含まれています。The data includes entries for people, the cars they own, and various maintenance services performed on those cars.

REST のデータの読み込み

接続を設定したら、CData JDBC ドライバと接続情報を使用してREST のデータをデータフレームとして読み込むことができます。

remote_table = spark.read.format ( "jdbc" ) \
	.option ( "driver" , driver) \
	.option ( "url" , url) \
	.option ( "dbtable" , "people") \
	.load ()

REST のデータの表示

読み込んだREST のデータを display 関数で確認してみましょう。

display (remote_table.select ("[ personal.name.first ]"))

Azure Databricks でREST のデータを分析

Databricks SparkSQL でデータを処理したい場合は、読み込んだデータを一時ビューとして登録します。

remote_table.createOrReplaceTempView ( "SAMPLE_VIEW" )

以下の SparkSQL で分析用のREST のデータを取得できます。

result = spark.sql("SELECT [SAMPLE_VIEW].[personal.age] AS age, [SAMPLE_VIEW].[personal.gender] AS gender,
    [SAMPLE_VIEW].[personal.name.first] AS first_name, [SAMPLE_VIEW].[personal.name.last] AS last_name, [vehicles].[model], FROM
    [SAMPLE_VIEW] JOIN [vehicles] ON [SAMPLE_VIEW].[_id] = [vehicles].[SAMPLE_VIEW_id]")

REST からのデータは、対象のノートブック内でのみ利用可能です。他のユーザーと共有したい場合は、テーブルとして保存してください。

remote_table.write.format ( "parquet" ) .saveAsTable ( "SAMPLE_TABLE" )

CData JDBC Driver for REST の30日間の無償トライアルをダウンロードして、Azure Databricks でリアルタイムREST のデータを活用してみてください。ご不明な点があれば、サポートチームまでお気軽にお問い合わせください。

はじめる準備はできましたか?

REST Driver の無料トライアルをダウンロードしてお試しください:

 ダウンロード

詳細:

REST Icon REST JDBC Driver お問い合わせ

REST Web サービス連携のパワフルなJava アプリケーションを素早く作成して配布。