【MCP Server】Gumloop をSnowflake のデータと連携するフローを作る

加藤龍彦
加藤龍彦
デジタルマーケティング
CData Connect AI のリモートMCP サーバー を活用し、Gumloop から自動化ワークフロー内でSnowflake にセキュアにアクセスしてアクションを実行します。

Gumloop は、トリガー、AI ノード、API、データコネクタを組み合わせてAI を活用したワークフローを作成できるビジュアル自動化プラットフォームです。Gumloop と CData Connect AI を組み込みの「MCP (Model Context Protocol) Server」を通じて統合することで、ワークフローからライブの にシームレスにアクセスして対話できるようになります。

このプラットフォームはローコード環境を提供しているため、大規模な開発作業なしで複雑なプロセスを簡単にオーケストレーションできます。柔軟性が高く、複数のビジネスアプリケーション間での統合が可能で、ライブデータを使ったエンドツーエンドの自動化を実現します。

CData Connect AI は、Snowflake のデータに接続するための専用クラウド間インターフェースを提供します。CData Connect AI Remote MCP Server により、Google ADK エージェントと Snowflakeの間でセキュアな通信が可能になります。これにより、ネイティブ対応データベースへのデータレプリケーションを必要とせずに、エージェントから Snowflake のデータの読み取りや操作を実行できます。CData Connect AIは最適化されたデータ処理機能を備えており、フィルタや JOIN を含むサポート対象のすべての SQL 操作を効率的に Snowflakeへ直接送信します。サーバーサイド処理を活用することで、要求されたSnowflake のデータ を迅速に取得できます。

この記事では、Connect AI での Snowflake 接続の構成、Gumloop への MCP Serverの登録、そして Snowflake をクエリするワークフローの構築に必要な手順をご紹介します。

Snowflake データ連携について

CData は、Snowflake のライブデータへのアクセスと統合を簡素化します。お客様は CData の接続機能を以下の目的で活用しています:

  • Snowflake データを迅速かつ効率的に読み書きできます。
  • 指定された Warehouse、Database、Schema のメタデータを動的に取得できます。
  • OAuth、OKTA、Azure AD、Azure マネージド サービス ID、PingFederate、秘密鍵など、さまざまな方法で認証できます。

多くの CData ユーザーは、CData ソリューションを使用して、お気に入りのツールやアプリケーションから Snowflake にアクセスし、さまざまなシステムからデータを Snowflake にレプリケートして、包括的なウェアハウジングと分析を行っています。

CData ソリューションとの Snowflake 統合についての詳細は、ブログをご覧ください:https://jp.cdata.com/blog/snowflake-integrations


はじめに


ステップ 1: Gumloop 用のSnowflake 接続を構成する

それでは早速、Gumloop からSnowflake への接続を設定していきましょう。Gumloop から Snowflake と対話するには、まず CData Connect AI で Snowflake への接続を作成して構成します。

  1. Connect AI にログインし、「Connections」をクリックして「 Add Connection」をクリックします
  2. 「Add Connection」パネルから「Snowflake」を選択します
  3. Snowflake に接続するために必要な認証情報を入力しましょう。

    それでは、Snowflake データベースに接続していきましょう。認証に加えて、以下の接続プロパティを設定します。

    • Url:お使いのSnowflake URL を指定します。例:https://orgname-myaccount.snowflakecomputing.com
      • Legacy URL を使用する場合:https://myaccount.region.snowflakecomputing.com
      • ご自身のURL は以下のステップで確認できます。
        1. Snowflake UI の左下にあるユーザー名をクリックします
        2. Account ID にカーソルを合わせます
        3. Copy Account URL アイコンをクリックして、アカウントURL をコピーします
    • Database(オプション):CData 製品によって公開されるテーブルとビューを、特定のSnowflake データベースのものに制限したい場合に設定します
    • Schema(オプション):CData 製品によって公開されるテーブルとビューを、特定のSnowflake データベーススキーマのものに制限したい場合に設定します

    Snowflakeへの認証

    CData 製品では、Snowflake ユーザー認証、フェデレーション認証、およびSSL クライアント認証をサポートしています。認証するには、UserPassword を設定し、AuthScheme プロパティで認証方法を選択してください。

    キーペア認証

    ユーザーアカウントに定義されたプライベートキーを使用してセキュアなトークンを作成し、キーペア認証で接続することも可能です。この方法で接続するには、AuthSchemePRIVATEKEY に設定し、以下の値を設定してください。

    • User:認証に使用するユーザーアカウント
    • PrivateKey:プライベートキーを含む.pem ファイルへのパスなど、ユーザーに使用されるプライベートキー
    • PrivateKeyType:プライベートキーを含むキーストアの種類(PEMKEY_FILE、PFXFILE など)
    • PrivateKeyPassword:指定されたプライベートキーのパスワード

    その他の認証方法については、ヘルプドキュメントの「Snowflakeへの認証」セクションをご確認ください。

    「Create & Test」をクリックします
  4. 「Add Snowflake Connection」ページの「Permissions」タブに移動し、ユーザーベースの権限を更新します。

パーソナルアクセストークンを追加する

パーソナルアクセストークン (PAT) は、Gumloop からConnect AI への接続を認証するために使用します。アクセスの粒度を維持するために、サービスごとに個別の PAT を作成することをおすすめします。

  1. Connect AI アプリの右上にある歯車アイコン () をクリックして、設定ページを開きます。
  2. 「Settings」ページで、「Access Tokens」セクションに移動し、 「Create PAT」をクリックします。
  3. PAT に名前を付けて「Create」をクリックします。
  4. パーソナルアクセストークンは作成時にのみ表示されます。必ずコピーして、今後の使用のために安全に保管してください。

これで、Gumloop からSnowflake に接続する準備が整いました!

ステップ2:Gumloop でMCP Server に接続する

続いて、Connect AI の MCP Server エンドポイントと認証情報をGumloop の認証情報に追加します。

  1. Gumloop のアカウントを作成して(アカウント未作成の場合)、サインインしましょう。
  2. Gumloop Credentials のページにアクセスして、MCP Server を構成します。
  3. 「Add Credentials」をクリックし、「MCP Server」を検索して選択します
  4. 以下の詳細情報を入力します。
    • URL: https://mcp.cloud.cdata.com/mcp
    • Label: Snowflake-mcp-server などのわかりやすい名前
    • Access Token / API Key: 空白のままにします
    • Additional Header: Authorization: Basic YOUR EMAIL:YOUR PAT
    • 認証情報を保存します

これで、Gumloop でワークフローを構築する際に MCP Server が利用できるようになりました。

ステップ3: ワークフローを構築してGumloop でSnowflake のリアルタイムデータを探索する

  1. Gumloop Personal workspace にアクセスし、 「Create Flow」をクリックします。
  2. 」アイコンを選択するか、「Ctrl」+「B」を押してノードまたはサブフローを追加します。
  3. 「Ask AI」を検索して選択します。
  4. 「Show More Options」をクリックし、「Connect MCP Server?」オプションを有効にします。
  5. 「MCP Servers」ドロップダウンから、保存したMCP 認証情報を選択します。
  6. プロンプトを追加し、要件に応じてAI モデルを選択します。
  7. 必要な詳細の構成が完了したら、「Run」をクリックしてパイプラインを実行します

ワークフローの実行が完了すると、CData Connect AI MCP Serverを通じて Snowflake を正常に取得できたことが確認できます。MCP Client ノードを使用することで、データに対する質問、レコードの取得、アクションの実行が可能になります。

CData Connect AI でビジネスシステムのデータ活用を今すぐスタート

いかがでしたか?Gumloop からSnowflake へのデータ接続が10分もかからずに完了したのではないでしょうか。業務に使えそう、と感じてくださった方は、14日間の無償トライアルでAI ツールからビジネスシステムへのリアルタイムデータ接続をぜひお試しください。

はじめる準備はできましたか?

CData Connect AI の詳細、または無料トライアルにお申し込みください:

無料トライアル お問い合わせ