Amazon SageMaker Canvas から RDS 経由で Snowflake のリアルタイムデータを活用
Amazon SageMaker Canvas は、コードを書かずに予測の生成、データの準備、モデルの構築ができるノーコード機械学習プラットフォームです。CData Connect AI と組み合わせることで、クラウド間でリアルタイムにSnowflake のデータにアクセスし、カスタム機械学習モデルの構築、顧客離反予測、テキスト生成、チャットボット開発など、さまざまな用途に活用できます。この記事では、RDS コネクタを使用して Amazon SageMaker Canvas から Connect AI に接続し、Snowflake のデータを ML モデルのデプロイメントに統合する方法をご紹介します。
CData Connect AI は、Snowflake 向けに純粋な SQL インターフェースをクラウド間で提供します。これにより、データをレプリケーションすることなく、Amazon SageMaker Canvas からSnowflake のデータに簡単に接続できます。Connect AI は Amazon SageMaker Canvas からは SQL Server データベースとまったく同じように見え、フィルタや JOIN などの SQL 操作をSnowflakeに直接プッシュする最適化されたデータ処理により、サーバーサイド処理を活用してSnowflake のデータをすばやく取得します。
Snowflake データ連携について
CData は、Snowflake のライブデータへのアクセスと統合を簡素化します。お客様は CData の接続機能を以下の目的で活用しています:
- Snowflake データを迅速かつ効率的に読み書きできます。
- 指定された Warehouse、Database、Schema のメタデータを動的に取得できます。
- OAuth、OKTA、Azure AD、Azure マネージド サービス ID、PingFederate、秘密鍵など、さまざまな方法で認証できます。
多くの CData ユーザーは、CData ソリューションを使用して、お気に入りのツールやアプリケーションから Snowflake にアクセスし、さまざまなシステムからデータを Snowflake にレプリケートして、包括的なウェアハウジングと分析を行っています。
CData ソリューションとの Snowflake 統合についての詳細は、ブログをご覧ください:https://jp.cdata.com/blog/snowflake-integrations
はじめに
Snowflake への接続を設定(Amazon SageMaker Canvas 向け)
Amazon SageMaker Canvas から Snowflake への接続は、CData Connect AI を介して行います。それでは、Snowflake のデータを Amazon SageMaker Canvas から利用できるようにするため、Snowflake への接続を作成していきましょう。
- Connect AI にログインして「Sources」をクリック、次に「 Add Connection」をクリック
- 接続を追加パネルから「Snowflake」を選択
-
Snowflake に接続するために必要な認証プロパティを入力します。
それでは、Snowflake データベースに接続していきましょう。認証に加えて、以下の接続プロパティを設定します。
- Url:お使いのSnowflake URL を指定します。例:https://orgname-myaccount.snowflakecomputing.com
- Legacy URL を使用する場合:https://myaccount.region.snowflakecomputing.com
- ご自身のURL は以下のステップで確認できます。
- Snowflake UI の左下にあるユーザー名をクリックします
- Account ID にカーソルを合わせます
- Copy Account URL アイコンをクリックして、アカウントURL をコピーします
- Database(オプション):CData 製品によって公開されるテーブルとビューを、特定のSnowflake データベースのものに制限したい場合に設定します
- Schema(オプション):CData 製品によって公開されるテーブルとビューを、特定のSnowflake データベーススキーマのものに制限したい場合に設定します
Snowflakeへの認証
CData 製品では、Snowflake ユーザー認証、フェデレーション認証、およびSSL クライアント認証をサポートしています。認証するには、User とPassword を設定し、AuthScheme プロパティで認証方法を選択してください。
キーペア認証
ユーザーアカウントに定義されたプライベートキーを使用してセキュアなトークンを作成し、キーペア認証で接続することも可能です。この方法で接続するには、AuthScheme をPRIVATEKEY に設定し、以下の値を設定してください。
- User:認証に使用するユーザーアカウント
- PrivateKey:プライベートキーを含む.pem ファイルへのパスなど、ユーザーに使用されるプライベートキー
- PrivateKeyType:プライベートキーを含むキーストアの種類(PEMKEY_FILE、PFXFILE など)
- PrivateKeyPassword:指定されたプライベートキーのパスワード
その他の認証方法については、ヘルプドキュメントの「Snowflakeへの認証」セクションをご確認ください。
- Url:お使いのSnowflake URL を指定します。例:https://orgname-myaccount.snowflakecomputing.com
- 「Save & Test」をクリック
-
Snowflake 接続の追加ページで「Permissions」タブに移動し、ユーザーベースの権限を更新します。
パーソナルアクセストークンを追加
REST API、OData API、または仮想 SQL Server を通じて Connect AI に接続する場合は、パーソナルアクセストークン(PAT)を使用して認証を行います。アクセス管理を細かく制御するため、サービスごとに個別の PAT を作成することをお勧めします。
- Connect AI アプリの右上にある歯車アイコン()をクリックして設定ページを開きます。
- 設定ページで「Access Tokens」セクションに移動し、「 Create PAT」をクリックします。
-
PAT に名前を付けて「Create」をクリックします。
- パーソナルアクセストークンは作成時にのみ表示されます。必ずコピーして、今後の利用のために安全に保管してください。
接続の設定と PAT の生成が完了したら、Amazon SageMaker Canvas からSnowflake のデータに接続する準備は完了です。
Amazon SageMaker Canvas から CData Connect AI に接続
CData Connect AI での接続設定が完了したら、RDS コネクタを使用してSnowflake のデータを Amazon SageMaker Canvas に統合していきましょう。
- Amazon SageMaker Canvas でドメインとユーザープロファイルを選択し、「Open Canvas」をクリックします。
- Canvas アプリケーションが開いたら、左側のパネルに移動して「My models」を選択します。
- My models 画面で「Create new model」をクリックします。
- Create new model ウィンドウでモデル名を入力し、Problem type を選択します。「Create」をクリックします。
- モデルバージョンが作成されたら、Select dataset タブで「Create dataset」をクリックします。
- Create a tabular dataset ウィンドウで「Dataset name」を入力し、「Create」をクリックします。
- 「Data Source」ドロップダウンをクリックして RDS コネクタを検索またはナビゲートし、「 Add Connection」をクリックします。
- Add a new RDS connection ウィンドウで、以下のプロパティを設定します。
- Connection Name: 任意の接続名
- Engine type を sqlserver-web に設定
- Port を 14333 に設定
- Address を tds.cdata.com に設定
- Username を Connect AI ユーザー(例: [email protected])に設定
- Password を上記ユーザーの PAT に設定
- Database name を Snowflake 接続名(例: Snowflake1)に設定
- 「Create connection」をクリックします。
Snowflake を Amazon SageMaker Canvas に統合
RDS で Connect AI への接続が設定できたら、Snowflake のデータを Amazon SageMaker Canvas のデータセットに統合していきましょう。
- Snowflake のデータで作成した RDS のテーブル形式データセットで、検索バーまたは接続リストから Connect AI で設定した Snowflake 接続を検索します。
- Snowflake から使用したいテーブルを選択し、右側のキャンバスにドラッグ&ドロップします。
- 以下のように、Snowflake 接続から任意の数のテーブルを結合してワークフローを作成できます。「Create dataset」をクリックします。
- データセットが作成されたら、「Select dataset」をクリックしてモデルを構築します。
- 分析を実行し、予測を生成してモデルをデプロイします。
これで、Amazon SageMaker からSnowflake のデータにリアルタイムでアクセスできるようになりました。カスタム ML モデルを構築し、ビジネスの予測インサイトを生成して、組織の成長に活用してください。
クラウドアプリケーションから Snowflake への SQL アクセス
Amazon SageMaker Canvas からSnowflake のデータへのダイレクト接続が完成しました。データをレプリケーションすることなく、接続やデータセット、予測モデルをさらに追加してビジネスを推進できます。
300 以上の SaaS、ビッグデータ、NoSQL ソースにクラウドアプリケーションから直接リアルタイムアクセスするには、CData Connect AI をご覧ください。