Amazon SageMaker Canvas から RDS 経由で Snowflake のリアルタイムデータを活用

Dibyendu Datta
Dibyendu Datta
Lead Technology Evangelist
CData Connect AI を使って Amazon SageMaker Canvas の Amazon RDS コネクタから Snowflake に接続し、リアルタイムのSnowflake のデータでカスタムモデルを構築する方法を解説します。

Amazon SageMaker Canvas は、コードを書かずに予測の生成、データの準備、モデルの構築ができるノーコード機械学習プラットフォームです。CData Connect AI と組み合わせることで、クラウド間でリアルタイムにSnowflake のデータにアクセスし、カスタム機械学習モデルの構築、顧客離反予測、テキスト生成、チャットボット開発など、さまざまな用途に活用できます。この記事では、RDS コネクタを使用して Amazon SageMaker Canvas から Connect AI に接続し、Snowflake のデータを ML モデルのデプロイメントに統合する方法をご紹介します。

CData Connect AI は、Snowflake 向けに純粋な SQL インターフェースをクラウド間で提供します。これにより、データをレプリケーションすることなく、Amazon SageMaker Canvas からSnowflake のデータに簡単に接続できます。Connect AI は Amazon SageMaker Canvas からは SQL Server データベースとまったく同じように見え、フィルタや JOIN などの SQL 操作をSnowflakeに直接プッシュする最適化されたデータ処理により、サーバーサイド処理を活用してSnowflake のデータをすばやく取得します。

Snowflake データ連携について

CData は、Snowflake のライブデータへのアクセスと統合を簡素化します。お客様は CData の接続機能を以下の目的で活用しています:

  • Snowflake データを迅速かつ効率的に読み書きできます。
  • 指定された Warehouse、Database、Schema のメタデータを動的に取得できます。
  • OAuth、OKTA、Azure AD、Azure マネージド サービス ID、PingFederate、秘密鍵など、さまざまな方法で認証できます。

多くの CData ユーザーは、CData ソリューションを使用して、お気に入りのツールやアプリケーションから Snowflake にアクセスし、さまざまなシステムからデータを Snowflake にレプリケートして、包括的なウェアハウジングと分析を行っています。

CData ソリューションとの Snowflake 統合についての詳細は、ブログをご覧ください:https://jp.cdata.com/blog/snowflake-integrations


はじめに


Snowflake への接続を設定(Amazon SageMaker Canvas 向け)

Amazon SageMaker Canvas から Snowflake への接続は、CData Connect AI を介して行います。それでは、Snowflake のデータを Amazon SageMaker Canvas から利用できるようにするため、Snowflake への接続を作成していきましょう。

  1. Connect AI にログインして「Sources」をクリック、次に「 Add Connection」をクリック
  2. 接続を追加パネルから「Snowflake」を選択
  3. Snowflake に接続するために必要な認証プロパティを入力します。

    それでは、Snowflake データベースに接続していきましょう。認証に加えて、以下の接続プロパティを設定します。

    • Url:お使いのSnowflake URL を指定します。例:https://orgname-myaccount.snowflakecomputing.com
      • Legacy URL を使用する場合:https://myaccount.region.snowflakecomputing.com
      • ご自身のURL は以下のステップで確認できます。
        1. Snowflake UI の左下にあるユーザー名をクリックします
        2. Account ID にカーソルを合わせます
        3. Copy Account URL アイコンをクリックして、アカウントURL をコピーします
    • Database(オプション):CData 製品によって公開されるテーブルとビューを、特定のSnowflake データベースのものに制限したい場合に設定します
    • Schema(オプション):CData 製品によって公開されるテーブルとビューを、特定のSnowflake データベーススキーマのものに制限したい場合に設定します

    Snowflakeへの認証

    CData 製品では、Snowflake ユーザー認証、フェデレーション認証、およびSSL クライアント認証をサポートしています。認証するには、UserPassword を設定し、AuthScheme プロパティで認証方法を選択してください。

    キーペア認証

    ユーザーアカウントに定義されたプライベートキーを使用してセキュアなトークンを作成し、キーペア認証で接続することも可能です。この方法で接続するには、AuthSchemePRIVATEKEY に設定し、以下の値を設定してください。

    • User:認証に使用するユーザーアカウント
    • PrivateKey:プライベートキーを含む.pem ファイルへのパスなど、ユーザーに使用されるプライベートキー
    • PrivateKeyType:プライベートキーを含むキーストアの種類(PEMKEY_FILE、PFXFILE など)
    • PrivateKeyPassword:指定されたプライベートキーのパスワード

    その他の認証方法については、ヘルプドキュメントの「Snowflakeへの認証」セクションをご確認ください。

  4. 「Save & Test」をクリック
  5. Snowflake 接続の追加ページで「Permissions」タブに移動し、ユーザーベースの権限を更新します。

パーソナルアクセストークンを追加

REST API、OData API、または仮想 SQL Server を通じて Connect AI に接続する場合は、パーソナルアクセストークン(PAT)を使用して認証を行います。アクセス管理を細かく制御するため、サービスごとに個別の PAT を作成することをお勧めします。

  1. Connect AI アプリの右上にある歯車アイコン()をクリックして設定ページを開きます。
  2. 設定ページで「Access Tokens」セクションに移動し、「 Create PAT」をクリックします。
  3. PAT に名前を付けて「Create」をクリックします。
  4. パーソナルアクセストークンは作成時にのみ表示されます。必ずコピーして、今後の利用のために安全に保管してください。

接続の設定と PAT の生成が完了したら、Amazon SageMaker Canvas からSnowflake のデータに接続する準備は完了です。

Amazon SageMaker Canvas から CData Connect AI に接続

CData Connect AI での接続設定が完了したら、RDS コネクタを使用してSnowflake のデータを Amazon SageMaker Canvas に統合していきましょう。

  1. Amazon SageMaker Canvas でドメインとユーザープロファイルを選択し、「Open Canvas」をクリックします。
  2. Canvas アプリケーションが開いたら、左側のパネルに移動して「My models」を選択します。
  3. My models 画面で「Create new model」をクリックします。
  4. Create new model ウィンドウでモデル名を入力し、Problem type を選択します。「Create」をクリックします。
  5. モデルバージョンが作成されたら、Select dataset タブで「Create dataset」をクリックします。
  6. Create a tabular dataset ウィンドウで「Dataset name」を入力し、「Create」をクリックします。
  7. 「Data Source」ドロップダウンをクリックして RDS コネクタを検索またはナビゲートし、「 Add Connection」をクリックします。
  8. Add a new RDS connection ウィンドウで、以下のプロパティを設定します。

    • Connection Name: 任意の接続名
    • Engine type を sqlserver-web に設定
    • Port を 14333 に設定
    • Addresstds.cdata.com に設定
    • Username を Connect AI ユーザー(例: [email protected])に設定
    • Password を上記ユーザーの PAT に設定
    • Database name を Snowflake 接続名(例: Snowflake1)に設定
  9. 「Create connection」をクリックします。

Snowflake を Amazon SageMaker Canvas に統合

RDS で Connect AI への接続が設定できたら、Snowflake のデータを Amazon SageMaker Canvas のデータセットに統合していきましょう。

  1. Snowflake のデータで作成した RDS のテーブル形式データセットで、検索バーまたは接続リストから Connect AI で設定した Snowflake 接続を検索します。
  2. Snowflake から使用したいテーブルを選択し、右側のキャンバスにドラッグ&ドロップします。
  3. 以下のように、Snowflake 接続から任意の数のテーブルを結合してワークフローを作成できます。「Create dataset」をクリックします。
  4. データセットが作成されたら、「Select dataset」をクリックしてモデルを構築します。
  5. 分析を実行し、予測を生成してモデルをデプロイします。

これで、Amazon SageMaker からSnowflake のデータにリアルタイムでアクセスできるようになりました。カスタム ML モデルを構築し、ビジネスの予測インサイトを生成して、組織の成長に活用してください。

クラウドアプリケーションから Snowflake への SQL アクセス

Amazon SageMaker Canvas からSnowflake のデータへのダイレクト接続が完成しました。データをレプリケーションすることなく、接続やデータセット、予測モデルをさらに追加してビジネスを推進できます。

300 以上の SaaS、ビッグデータ、NoSQL ソースにクラウドアプリケーションから直接リアルタイムアクセスするには、CData Connect AI をご覧ください。

はじめる準備はできましたか?

CData Connect AI の詳細、または無料トライアルにお申し込みください:

無料トライアル お問い合わせ