【MCP Server】Gemini CLI からSpark のデータにリアルタイムで接続する方法
Gemini CLI は、Google のGemini AI モデルへのアクセスを提供するコマンドラインインターフェースツールです。コード生成、テキスト分析、会話型AI 機能を利用できます。コーディングで活用している方も多いのではないでしょうか。CData Connect AI と組み合わせることで、Gemini CLI をSpark とリアルタイムに連携できるようになります。この記事では、Connect AI を使用したSpark への接続方法と、Spark と対話するためのGemini CLI の構成手順をご紹介します。
CData Connect AI は、Spark のデータに接続するための専用クラウド間インターフェースを提供します。CData Connect AI Remote MCP Server により、Google ADK エージェントと Sparkの間でセキュアな通信が可能になります。これにより、ネイティブ対応データベースへのデータレプリケーションを必要とせずに、エージェントから Spark のデータの読み取りや操作を実行できます。CData Connect AIは最適化されたデータ処理機能を備えており、フィルタや JOIN を含むサポート対象のすべての SQL 操作を効率的に Sparkへ直接送信します。サーバーサイド処理を活用することで、要求されたSpark のデータ を迅速に取得できます。
ステップ1: Gemini CLI 用の Spark 接続を構成
それでは早速、Gemini CLI から Spark への接続を設定していきましょう。Gemini CLI から Spark と対話するには、まずCData Connect AI でSpark 接続を作成して構成します。
-
Connect AI にログインし、「Connections」をクリックして「 Add Connection」をクリックします
-
「Add Connection」パネルから「Spark」を選択します
-
Spark に接続するために必要な認証情報を入力しましょう。
SparkSQL への接続
SparkSQL への接続を確立するには以下を指定します。
- Server:SparkSQL をホストするサーバーのホスト名またはIP アドレスに設定。
- Port:SparkSQL インスタンスへの接続用のポートに設定。
- TransportMode:SparkSQL サーバーとの通信に使用するトランスポートモード。有効な入力値は、BINARY およびHTTP です。デフォルトではBINARY が選択されます。
- AuthScheme:使用される認証スキーム。有効な入力値はPLAIN、LDAP、NOSASL、およびKERBEROS です。デフォルトではPLAIN が選択されます。
Databricks への接続
Databricks クラスターに接続するには、以下の説明に従ってプロパティを設定します。Note:必要な値は、「クラスター」に移動して目的のクラスターを選択し、 「Advanced Options」の下にある「JDBC/ODBC」タブを選択することで、Databricks インスタンスで見つけることができます。
- Server:Databricks クラスターのサーバーのホスト名に設定。
- Port:443
- TransportMode:HTTP
- HTTPPath:Databricks クラスターのHTTP パスに設定。
- UseSSL:True
- AuthScheme:PLAIN
- User:'token' に設定。
- Password:パーソナルアクセストークンに設定(値は、Databricks インスタンスの「ユーザー設定」ページに移動して「アクセストークン」タブを選択することで取得できます)。
「Create & Test」をクリックします
-
「Add Spark Connection」ページの「Permissions」タブに移動し、ユーザーベースの権限を更新します。
パーソナルアクセストークンを追加する
パーソナルアクセストークン (PAT) は、Gemini CLI からConnect AI への接続を認証するために使用します。アクセスの粒度を維持するために、サービスごとに個別の PAT を作成することをおすすめします。
- Connect AI アプリの右上にある歯車アイコン () をクリックして、設定ページを開きます。
- 「Settings」ページで、「Access Tokens」セクションに移動し、 「Create PAT」をクリックします。
-
PAT に名前を付けて「Create」をクリックします。
- パーソナルアクセストークンは作成時にのみ表示されます。必ずコピーして、今後の使用のために安全に保管してください。
これで、Gemini CLI からSpark に接続する準備が整いました!
ステップ 2: CData Connect AI 用に Gemini CLI を構成
それでは、CData Connect AI に接続するための Gemini CLI を構成していきましょう。
-
システムに Gemini CLI がインストールされていることを確認します。インストールされていない場合は、npm を使用してインストールしましょう。
npm install -g @google/gemini-cli
-
Gemini CLI の設定ファイルを見つけましょう。ファイルが存在しない場合は新規作成してください。
- Linux/Unix/Mac: ~/.gemini/settings.json
- Windows: %USERPROFILE%\.gemini\settings.json
-
設定ファイルの「mcpServers」オブジェクトに CData Connect AI を追加します。YOUR_EMAIL とYOUR_PAT を、Connect AI のメールアドレスと先ほど作成したPAT に置き換えてください。
{ "mcpServers": { "cdata-connect-cloud": { "httpUrl": "https://mcp.cloud.cdata.com/mcp", "headers": { "Authorization": "Basic YOUR_EMAIL:YOUR_PAT" } } } }例えば、メールアドレスが [email protected] で、PAT が Uu90pt5vEO... の場合、Authorization ヘッダーは次のようになります:"Authorization": "Basic [email protected]:Uu90pt5vEO..."
- 設定ファイルを保存します。これで、Gemini CLI はデータ操作に CData Connect AI MCP Server を使用するようになります。
ステップ 3: 自然言語でライブの Spark のデータ をクエリする
Gemini CLI が構成され、CData Connect AI に接続されたので、自然言語クエリを使用して Spark と対話できるようになりました。MCP 統合により、質問をして Spark データソースからリアルタイムで応答を受け取ることができます。
Gemini CLI を使ってデータの探索を始めてみましょう:
-
ターミナルを開いて、Gemini CLI セッションを開始します:
gemini
-
これで、自然言語を使って Spark をクエリできます。例えば:
- 「過去 30 日間のすべての顧客を表示して」
- 「最もパフォーマンスの良い製品は何ですか?」
- 「第 4 四半期の売上トレンドを分析して」
- 「すべてのアクティブなプロジェクトとその現在のステータスをリスト表示して」
- Gemini CLI は、自然言語クエリを適切な SQL クエリに自動的に変換し、CData Connect AI MCP Server を通じて Spark データに対して実行します。
Gemini CLI の自然言語処理機能と CData Connect AI の堅牢なデータ接続機能を組み合わせることで、複雑な SQL クエリを記述したり、基礎となるデータ構造の深い技術知識を必要とすることなく、Spark を探索して分析できます。
CData Connect AI を入手する
クラウドアプリケーションから 300 以上の SaaS、ビッグデータ、NoSQL ソースへのライブデータアクセスを取得するには、今すぐ CData Connect AI をお試しください!