【MCP Server】OpenAI のPython SDK からWorkday のデータと連携しよう!
OpenAI の Python SDK は、さまざまなデータソースとやり取りできるAI アプリケーションを構築するための強力な機能を提供しています。CData Connect AI のリモートMCP と組み合わせることで、自然言語クエリを通じてWorkday とリアルタイムでやり取りできるインテリジェントなチャットアプリケーションを構築できます。この記事では、Connect AI のリモートMCP を使用してWorkday に接続し、会話型AI を通じてWorkday とやり取りする OpenAI API 対応のPython アプリケーションを作成する方法をご紹介します。
CData Connect AI は、Workday のデータに接続するための専用クラウド間インターフェースを提供します。CData Connect AI Remote MCP Server により、Google ADK エージェントと Workdayの間でセキュアな通信が可能になります。これにより、ネイティブ対応データベースへのデータレプリケーションを必要とせずに、エージェントから Workday のデータの読み取りや操作を実行できます。CData Connect AIは最適化されたデータ処理機能を備えており、フィルタや JOIN を含むサポート対象のすべての SQL 操作を効率的に Workdayへ直接送信します。サーバーサイド処理を活用することで、要求されたWorkday のデータ を迅速に取得できます。
この記事では、自然言語を使用してデータを会話形式で探索(Vibe Query)できる OpenAI 対応 Python アプリケーションの設定方法をご紹介します。Connect AI を使用すれば、Workday に加えて、数百の他のデータソースにもアクセスできる AI アシスタントを構築できます。
Workday データ連携について
CData は、Workday のライブデータにアクセスし、統合するための最も簡単な方法を提供します。お客様は CData の接続機能を以下の目的で使用しています:
- Prism Analytics Data Catalog で作成したテーブルやデータセットにアクセスでき、Workday システムの忠実性を損なうことなく、ネイティブの Workday データハブを操作できます。
- Workday Reports-as-a-Service にアクセスして、Prism から利用できない部門データセットや、Prism の許容サイズを超えるデータセットのデータを表示できます。
- WQL、REST、または SOAP でベースデータオブジェクトにアクセスし、より詳細で細かいアクセスを実現できます(ただし、クエリの作成には Workday 管理者や IT の支援が必要な場合があります)。
ユーザーは、Tableau、Power BI、Excel などの分析ツールと Workday を統合し、当社のツールを活用して Workday データをデータベースやデータウェアハウスにレプリケートしています。アクセスは、認証されたユーザーの ID とロールに基づいて、ユーザーレベルで保護されます。
Workday を CData と連携させるための設定についての詳細は、ナレッジベース記事をご覧ください:Comprehensive Workday Connectivity through Workday WQL および Reports-as-a-Service & Workday + CData: Connection & Integration Best Practices
はじめに
ステップ 1:OpenAI アプリケーション用の Workday 接続を設定する
OpenAI アプリケーションからWorkday への接続は、CData Connect AI のリモートMCP を通じて実現されます。OpenAI アシスタントからWorkday とやり取りするために、まず CData Connect AI で Workday 接続を作成・設定していきましょう。
- Connect AI にログインし、「Sources」をクリックして、「Add Connection」をクリックします。
- 「Add Connection」パネルから「Workday」を選択します
-
Workday に接続するために必要な認証プロパティを入力します。
Workday 接続プロパティの取得・設定方法
ここでは、4つのWorkday API の接続パラメータを設定する方法、およびTenant とBaseURL を取得する方法について説明します。必要なAPI のパラメータが設定され、カスタムOAuth および / またはAzure AD API クライアントを作成したら、接続の準備は完了です。
接続の前提条件
API / 前提条件 / 接続パラメータ
WQL / WQL サービスを有効化(下記参照) / ConnectionType: WQL
Reports as a Service / カタログレポートの設定(ヘルプドキュメントの「データアクセスのファインチューニング」参照) / ConnectionType: Reports
REST / 自動で有効化 / ConnectionType: REST
SOAP / 自動で有効化 / ヘルプドキュメントのWorkday SOAP API への認証を参照BaseURL およびTenant の取得
BaseURL およびTenant プロパティを取得するため、Workday にログインしてView API Clients を検索します。 この画面では、Workday はBaseURL とTenant の両方を含むURL であるWorkday REST API Endpoint を表示します。
REST API Endpoint のフォーマットは、 https://domain.com/
/mycompany です。ここで、
- https://domain.com(URL のサブディレクトリと会社名の前の部分)はBaseURL です。
- mycompany(URL の最後のスラッシュの後の部分)はTenant です。
例えば、REST API エンドポイントがhttps://wd3-impl-services1.workday.com/ccx/api/v1/mycompany の場合、 BaseURL はhttps://wd3-impl-services1.workday.com であり、Tenant はmycompany です。
WQL サービスを有効化
Workday WQL API を介して接続するには、はじめにWQL Service を有効にする必要があります。- Workday を開きます。
- 検索バーにView Domain と入力します。
- プロンプトにWorkday Query Language と入力します。
- Allowed Security Group Types のいずれかに、接続するユーザーが含まれていることを確認します。
Workday への認証
Basic 認証以外のほとんどのWorkday 接続では、認証のためにOAuth ベースのカスタムAPI クライアントアプリケーションを作成する必要があります。これには、ユーザーがAzure AD 資格情報を介して接続するエンタープライズインストールも含まれます。 Workday への認証につての詳細は、ヘルプドキュメントの「Workday への認証」セクションを参照してください。
- 「Create & Test」をクリックします
-
「Add Workday Connection」ページの「Permissions」タブに移動し、ユーザーベースの権限を更新します。
パーソナルアクセストークンの追加
パーソナルアクセストークン(PAT)は、OpenAI アプリケーションから Connect AI への接続を認証するために使用されます。アクセス制御の粒度を維持するために、サービスごとに個別のPAT を作成することをおすすめします。
- Connect AI アプリの右上にある歯車アイコン()をクリックして、設定ページを開きます。
- 設定ページの「Access Tokens」セクションに移動し、「Create PAT」をクリックします。
-
PAT に名前を付けて「Create」をクリックします。
- パーソナルアクセストークンは作成時にのみ表示されますので、必ずコピーして安全な場所に保管してください。
これで接続の設定とPAT の生成が完了しました。OpenAI アプリケーションからWorkday に接続する準備が整いました。
ステップ 2:CData Connect AI 用にOpenAI Python アプリケーションを設定する
以下の手順に従って、CData Connect AI に接続するように OpenAI Python アプリケーションを設定していきましょう。事前構築済みのエージェントをこちらから使用できます。または、以下の手順に従って独自のエージェントを作成することもできます。
-
Python 3.8 以上がインストールされていることを確認し、必要な依存関係をインストールします。
pip install openai python-dotenv httpx
-
GitHub から OpenAI MCP クライアントをクローンまたはダウンロードします。
git clone https://github.com/CDataSoftware/openai-mcp-client.git cd openai-mcp-client
-
環境変数を設定します。プロジェクトのルートに .env ファイルを作成し、以下の変数を設定します:
OPENAI_API_KEY=YOUR_OPENAI_API_KEY MCP_SERVER_URL=https://mcp.cloud.cdata.com/mcp MCP_USERNAME=YOUR_EMAIL MCP_PASSWORD=YOUR_PAT OPENAI_MODEL=gpt-4YOUR_OPENAI_API_KEY を OpenAI API キーに、YOUR_EMAIL を Connect AI のメールアドレスに、YOUR_PAT をステップ 1 で作成したパーソナルアクセストークンに置き換えてください。 -
独自のアプリケーションを作成する場合は、CData Connect AI MCP Server に接続するための中核となる実装は以下のとおりです。
import os import asyncio import base64 from dotenv import load_dotenv from mcp_client import MCPServerStreamableHttp, MCPAgent # 環境変数を読み込む load_dotenv() async def main(): """[service] データとやり取りするためのメインチャットループ""" # 設定を取得 api_key = os.getenv('OPENAI_API_KEY') mcp_url = os.getenv('MCP_SERVER_URL', 'https://mcp.cloud.cdata.com/mcp') username = os.getenv('MCP_USERNAME', '') password = os.getenv('MCP_PASSWORD', '') model = os.getenv('OPENAI_MODEL', 'gpt-4') # MCP サーバー用の認証ヘッダーを作成 headers = {} if username and password: auth = base64.b64encode(f"{username}:{password}".encode()).decode() headers = {"Authorization": f"Basic {auth}"} # CData MCP Server に接続 async with MCPServerStreamableHttp( name="CData MCP Server", params={ "url": mcp_url, "headers": headers, "timeout": 30, "verify_ssl": True } ) as mcp_server: #[service] データにアクセスできる AI エージェントを作成 agent = MCPAgent( name="data_assistant", model=model, mcp_servers=[mcp_server], instructions="""あなたは CData Connect AI を通じてWorkday データにアクセスできるデータクエリアシスタントです。 ユーザーが[service] をリアルタイムで探索・クエリできるようサポートしてください。 利用可能な MCP ツールを使用して以下を実行できます: - 利用可能なデータベースとスキーマの一覧表示 - テーブル構造の探索 - SQL クエリの実行 - データに関する洞察の提供 実行内容を常に説明し、結果を明確にフォーマットしてください。""", api_key=api_key ) await agent.initialize() print(f"接続完了!{len(agent._tools_cache)} 個のツールが利用可能です。") print(" [service] と会話してみましょう(終了するには 'exit' と入力): ") # 対話型チャットループ conversation = [] while True: user_input = input("あなた: ") if user_input.lower() in ['exit', 'quit']: break conversation.append({"role": "user", "content": user_input}) print("アシスタント: ", end="", flush=True) response = await agent.run(conversation) print(response["content"]) conversation.append({"role": "assistant", "content": response["content"]}) if __name__ == "__main__": asyncio.run(main()) -
OpenAI アプリケーションを実行します:
python client.py
- 自然言語クエリを使用してWorkday とやり取りを開始してください。これで、OpenAI アシスタントは CData Connect AI MCP Server を通じてWorkday にアクセスできるようになりました。
ステップ 3:ライブWorkday データへのアクセスを備えたインテリジェントアプリケーションを構築する
OpenAI Python アプリケーションを設定して CData Connect AI に接続できたので、自然言語を使用してWorkday とやり取りする高度な AI アシスタントを構築できます。MCP 統合により、OpenAI の高度な言語モデルを通じて、アプリケーションに強力なデータアクセス機能が提供されます。
アシスタントで使用可能な MCP ツール
OpenAI アシスタントは、以下の CData Connect AI MCP ツールにアクセスできます:
- queryData:接続されたデータソースに対して SQL クエリを実行
- execData:ストアドプロシージャを実行
- getCatalogs:利用可能なデータベース接続を取得
- getSchemas:特定のカタログのデータベーススキーマを一覧表示
- getTables:スキーマ内のテーブルを一覧表示
- getColumns:特定のテーブルの列情報を取得
- getPrimaryKeys:プライマリキー情報を取得
- getIndexes:テーブルのインデックス情報を取得
- getProcedures:利用可能なストアドプロシージャを一覧表示
ユースケース例
ライブのWorkday アクセスを備えた OpenAI 対応アプリケーションでできることの例をいくつかご紹介します:
- 会話型分析:自然言語を使用して複雑なビジネスの質問に答えるチャットインターフェースを構築
- 自動化レポート:リアルタイムデータクエリに基づいて動的なレポートとサマリーを生成
- データディスカバリーアシスタント:SQL の知識がなくてもデータ構造を探索・理解できるようユーザーをサポート
- インテリジェントデータモニター:トレンドや異常を積極的に特定する AI アシスタントを作成
- カスタムクエリビルダー:会話型のやり取りを通じて複雑なクエリを作成できるように
アシスタントとのやり取り
実行すると、自然言語を通じて OpenAI アシスタントとやり取りできます。クエリの例:
- 「利用可能なすべてのデータベースを表示して」
- 「sales データベースにはどんなテーブルがある?」
- 「売上トップ 10 の顧客をリストアップして」
- 「先月のすべての注文を検索して」
- 「過去四半期の売上トレンドを分析して」
- 「customer テーブルの構造は?」
OpenAI アシスタントは、これらの自然言語クエリを自動的に適切な SQL クエリに変換し、CData Connect AI MCP Server を通じてWorkday データに対して実行します。複雑な SQL を記述したり、基盤となるデータ構造を理解したりすることなく、インテリジェントな洞察を提供できます。
高度な機能
OpenAI MCP 統合は、以下の高度な機能をサポートしています:
- コンテキスト認識:アシスタントは会話のコンテキストを維持し、フォローアップ質問に対応
- マルチターン会話:反復的な対話を通じて複雑なクエリを構築
- インテリジェントエラー処理:クエリで問題が発生した場合に役立つ提案を提供
- データインサイト:GPT の分析機能を活用してパターンやトレンドを特定
- 柔軟なフォーマット:さまざまな形式(テーブル、サマリー、JSON など)で結果をリクエスト
CData Connect AI でビジネスシステムのデータ活用を今すぐスタート
いかがでしたか?Mistral AI からWorkday へのデータ接続が簡単に完了したのではないでしょうか。業務に使えそう、と感じてくださった方は、14 日間の無償トライアルで AI ツールからビジネスシステムへのリアルタイムデータ接続をぜひお試しください。