Azure Databricks でXero のデータに接続してデータ処理を行う方法
Databricks は、Apache Spark によるデータ処理機能を提供するクラウドベースのサービスです。CData JDBC ドライバと組み合わせることで、Databricks を使用してリアルタイムXero のデータのデータエンジニアリングとデータサイエンスを実行できます。この記事では、Azure で CData JDBC ドライバをホストし、Databricks からリアルタイムXero のデータに接続してデータを処理する方法を説明します。
最適化されたデータ処理機能を組み込んだ CData JDBC ドライバは、リアルタイムXero のデータとのインタラクションにおいて卓越したパフォーマンスを発揮します。Xero に対して複雑な SQL クエリを発行すると、ドライバーはフィルタや集計などのサポートされている SQL 操作を直接Xeroにプッシュし、サポートされていない操作(主に SQL 関数や JOIN 操作)は組み込みの SQL エンジンを使用してクライアント側で処理します。動的メタデータクエリ機能により、ネイティブのデータ型を使用してXero のデータの操作・分析が可能です。
Xero データ連携について
CData を使用すれば、Xero のライブデータへのアクセスと統合がこれまでになく簡単になります。お客様は CData の接続機能を以下の目的で利用しています:
- Xero Accounts と、米国およびオーストラリアの Payroll API の両方に接続できます。
- Customers、Transactions、Invoices、Sales Receipts などの Xero オブジェクトの読み取り、書き込み、更新、削除ができます。
- SQL ストアドプロシージャを使用して、カートへのアイテム追加、注文の送信、添付ファイルのダウンロードなどのアクションを実行できます。
- 会計、給与、ファイル、固定資産、プロジェクトデータを扱うことができます。
お客様は、Tableau、Qlik Sense、Excel などのお気に入りのツールと Xero データを定期的に統合し、Xero データをデータベースやデータウェアハウスに統合しています。
はじめに
CData JDBC ドライバを Azure にインストール
Databricks でリアルタイムXero のデータを操作するには、Azure Data Lake Storage(ADLS)を通じてドライバーをインストールします。(以前のバージョンの記事で説明していた DBFS を介した接続方法は非推奨となっていますが、廃止日は公開されていません。)
- JDBC JAR ファイルを任意の Blob コンテナにアップロードします(例:「databrickslibraries」ストレージアカウントの「jdbcjars」コンテナ)。
- ストレージアカウントから「セキュリティとネットワーク」を展開し、「アクセスキー」をクリックしてアカウントキーを取得します。使用するキーを表示してコピーしてください。
- コンテナに移動し、JAR を保存している特定のコンテナを開き、JDBC JAR ファイルのエントリを選択して JAR ファイルの URL を取得します。ファイルの詳細が開き、URL をクリップボードにコピーするボタンがあります。この値は以下のようになります(「blob」の部分はストレージアカウントの種類によって異なる場合があります):
https://databrickslibraries.blob.core.windows.net/jdbcjars/cdata.jdbc.salesforce.jar
- Databricks クラスターの「Configuration」タブで「Edit」ボタンをクリックし、「Advanced options」を展開します。そこで、以下の Spark オプション(JAR URL のドメイン名から派生)に、コピーしたアカウントキーを値として追加し、「Confirm」をクリックします:
spark.hadoop.fs.azure.account.key.databrickslibraries.blob.core.windows.net
- Databricks クラスターの「Libraries」タブで「Install new」をクリックし、ADLS オプションを選択します。ドライバー JAR の ABFSS URL(これも JAR URL のドメイン名から派生)を指定し、「Install」をクリックします。ABFSS URL は以下のようになります:
abfss://[email protected]/cdata.jdbc.salesforce.jar
Databricks からXeroに接続
JAR ファイルがインストールされたら、Databricks でリアルタイムXero のデータを操作する準備が整いました。まず、ワークスペースで新しいノートブックを作成します。ワークブックに名前を付け、言語として Python が選択されていることを確認し(デフォルトで選択されているはずです)、「Connect」をクリックして「General Compute」から JDBC ドライバーをインストールしたクラスターを選択します(デフォルトで選択されているはずです)。
Xeroへの接続を設定
JDBC ドライバのクラスを参照し、JDBC URL で使用する接続文字列を構築してXeroに接続します。また、JDBC URL に RTK プロパティを設定する必要があります(Beta ドライバーを使用している場合を除く)。このプロパティの設定方法については、インストールに含まれるライセンスファイルを参照してください。
driver = "cdata.jdbc.xero.XeroDriver" url = "jdbc:xero:RTK=5246...;"
組み込みの接続文字列デザイナー
JDBC URL の構築には、Xero JDBC Driver に組み込まれている接続文字列デザイナーを使用できます。JAR ファイルをダブルクリックするか、コマンドラインから JAR ファイルを実行してください。
java -jar cdata.jdbc.xero.jar
接続プロパティを入力し、接続文字列をクリップボードにコピーします。
接続には、認証用の値に加えてSchema 接続プロパティを設定してください。Xero はプライベートアプリケーション、 パブリックアプリケーション、パートナーアプリケーションに認証を提供します。設定したアプリケーションに応じて、XeroAppAuthentication プロパティを PUBLIC、PRIVATE、またはPARTNER に設定する必要があります。プライベートアプリケーションから接続するには、追加でOAuthAccessToken、OAuthClientId、 OAuthClientSecret、CertificateStoreType、CertificateStore、およびCertificateStorePassword を設定してください。
パブリックまたはパートナーアプリケーションから接続する場合は、埋め込みOAuthClientId、OAuthClientSecret、 およびCallbackURL を指定するか、アプリを登録してOAuth の値を入手できます。
Xero への認証については、ヘルプドキュメントの「はじめに」を参照してください。
Xero のデータの読み込み
接続を設定したら、CData JDBC ドライバと接続情報を使用してXero のデータをデータフレームとして読み込むことができます。
remote_table = spark.read.format ( "jdbc" ) \ .option ( "driver" , driver) \ .option ( "url" , url) \ .option ( "dbtable" , "Items") \ .load ()
Xero のデータの表示
読み込んだXero のデータを display 関数で確認してみましょう。
display (remote_table.select ("Name"))
Azure Databricks でXero のデータを分析
Databricks SparkSQL でデータを処理したい場合は、読み込んだデータを一時ビューとして登録します。
remote_table.createOrReplaceTempView ( "SAMPLE_VIEW" )
以下の SparkSQL で分析用のXero のデータを取得できます。
result = spark.sql("SELECT Name, SUM(QuantityOnHand) FROM SAMPLE_VIEW GROUP BY Name")
Xero からのデータは、対象のノートブック内でのみ利用可能です。他のユーザーと共有したい場合は、テーブルとして保存してください。
remote_table.write.format ( "parquet" ) .saveAsTable ( "SAMPLE_TABLE" )
CData JDBC Driver for Xero の30日間の無償トライアルをダウンロードして、Azure Databricks でリアルタイムXero のデータを活用してみてください。ご不明な点があれば、サポートチームまでお気軽にお問い合わせください。