【MCP Server】LangChain からDatabricks のデータに連携しよう!

加藤龍彦
加藤龍彦
デジタルマーケティング
LangChain とCData Connect AI MCP Server で Databricks へのリアルタイムアクセスを実現。自然言語クエリでデータ探索できる AI ワークフローを構築する方法をご紹介します。

LangChain は、開発者やデータエンジニア、AI 実践者が LLM、ツール、API、データコネクタを組み合わせて AI 活用アプリケーションやワークフローを構築するためのフレームワークです。LangChain と CData Connect AI を組み込みの MCP Server を通じて統合することで、ワークフローからライブの Databricks にリアルタイムで簡単にアクセスして対話できるようになります。

CData Connect AI は、Databricks のデータに接続するための専用クラウド間インターフェースを提供します。CData Connect AI Remote MCP Server により、Google ADK エージェントと Databricksの間でセキュアな通信が可能になります。これにより、ネイティブ対応データベースへのデータレプリケーションを必要とせずに、エージェントから Databricks のデータの読み取りや操作を実行できます。CData Connect AIは最適化されたデータ処理機能を備えており、フィルタや JOIN を含むサポート対象のすべての SQL 操作を効率的に Databricksへ直接送信します。サーバーサイド処理を活用することで、要求されたDatabricks のデータ を迅速に取得できます。

この記事では、CData Connect AI での Databricks 接続の設定、LangChain への MCP サーバーの登録、そして Databricks をリアルタイムでクエリするワークフローの構築方法をご紹介します。

前提条件

Databricks データ連携について

CData を使用すれば、Databricks のライブデータへのアクセスと統合がこれまでになく簡単になります。お客様は CData の接続機能を以下の目的で利用しています:

  • Runtime バージョン 9.1 - 13.X から Pro および Classic Databricks SQL バージョンまで、すべてのバージョンの Databricks にアクセスできます。
  • あらゆるホスティングソリューションとの互換性により、お好みの環境で Databricks を使用し続けることができます。
  • パーソナルアクセストークン、Azure サービスプリンシパル、Azure AD など、さまざまな方法で安全に認証できます。
  • Databricks ファイルシステム、Azure Blob ストレージ、AWS S3 ストレージを使用して Databricks にデータをアップロードできます。

多くのお客様が、さまざまなシステムから Databricks データレイクハウスにデータを移行するために CData のソリューションを使用していますが、ライブ接続ソリューションを使用して、データベースと Databricks 間の接続をフェデレートしているお客様も多数います。これらのお客様は、SQL Server リンクサーバーまたは Polybase を使用して、既存の RDBMS 内から Databricks へのライブアクセスを実現しています。

一般的な Databricks のユースケースと CData のソリューションがデータの問題解決にどのように役立つかについては、ブログをご覧ください:What is Databricks Used For? 6 Use Cases


はじめに


ステップ 1:LangChain 用の Databricks 接続を設定する

それでは早速、LangChain から Databricks にアクセスできるようにしていきましょう。まず、CData Connect AI で Databricks 接続を作成します。この接続は、その後リモート MCP サーバーを通じて LangChain に公開されます。

  1. Connect AI にログインし、「Sources」をクリックして「+ Add Connection」をクリックします
  2. 利用可能なデータソースから「Databricks」を選択します
  3. Databricks に接続するために必要な認証情報を入力しましょう。

    Databricks 接続プロパティの取得・設定方法

    Databricks クラスターに接続するには、以下のプロパティを設定します。

    • Database:Databricks データベース名。
    • Server:Databricks クラスターのサーバーのホスト名
    • HTTPPath:Databricks クラスターのHTTP パス。
    • Token:個人用アクセストークン。この値は、Databricks インスタンスのユーザー設定ページに移動してアクセストークンタブを選択することで取得できます。
    Databricks インスタンスで必要な値は、クラスターに移動して目的のクラスターを選択し、Advanced Options の下にあるJDBC/ODBC タブを選択することで見つけることができます。

    Databricks への認証

    CData は、次の認証スキームをサポートしています。

    • 個人用アクセストークン
    • Microsoft Entra ID(Azure AD)
    • Azure サービスプリンシパル
    • OAuthU2M
    • OAuthM2M

    個人用アクセストークン

    認証するには、次を設定します。

    • AuthSchemePersonalAccessToken
    • Token:Databricks サーバーへの接続に使用するトークン。Databricks インスタンスのユーザー設定ページに移動してアクセストークンタブを選択することで取得できます。

    その他の認証方法については、ヘルプドキュメント の「はじめに」セクションを参照してください。

  4. 「Create & Test」をクリックします
  5. 認証が完了したら、Databricks 接続の「Permissions」タブを開き、必要に応じてユーザーベースの権限を設定します

パーソナルアクセストークン(PAT)を生成する

LangChain は、アカウントのメールアドレスとパーソナルアクセストークン(PAT)を使用して Connect AI に認証します。アクセス制御の粒度を維持するために、統合ごとに個別の PAT を作成することをおすすめします。

  1. Connect AI で、右上の歯車アイコンを選択して「Settings」を開きます
  2. 「Access Tokens」で、「Create PAT」を選択します
  3. トークンのわかりやすい名前を付けて、「Create」を選択します
  4. トークンをコピーして安全に保管してください。PAT は作成時にのみ表示されます

これで Databricks 接続の設定と PAT の生成が完了しました。LangChain から CData MCP サーバーを通じて Databricks に接続する準備が整いました。

注:Connect AI の「Integrations」セクションの「LangChain」から PAT を生成することもできます。「Connect」→「 Create PAT」をクリックするだけで生成できます。

ステップ 2:LangChain で MCP サーバーに接続する

続いて、LangChain をCData Connect AI のリモートMCP サーバー に接続していきましょう。推論に OpenAI(ChatGPT)を使用するには、MCP サーバーエンドポイントと認証情報を config.py ファイルで設定します。これらを設定することで、LangChain が MCP サーバーツールを呼び出せるようになり、OpenAI が自然言語での推論を処理してくれます。

  1. LangChain MCP 用のフォルダを作成します
  2. フォルダ内にconfig.pylangchain.py の2つの Python ファイルを作成します。
  3. config.py で、MCP サーバーの認証と URL を定義する Config クラスを作成します。Base64 エンコードされた CData Connect AI のユーザー名と PAT(前提条件で取得したもの)を指定する必要があります。
     
    class Config: 
          MCP_BASE_URL = "https://mcp.cloud.cdata.com/mcp"   # MCP Server の URL 
          MCP_AUTH = "base64encoded(EMAIL:PAT)"   # Base64 エンコードされた Connect AI の Email:PAT 
    

    注:Base64 エンコードツールを使用して、MCP_AUTH の Base64 エンコード版を作成できます。

  4. langchain.py で、MCP サーバーと MCP クライアントを設定して、ツールとプロンプトを呼び出します:
     
    """ 
    LangChain ReAct エージェントと CData Connect AI MCP サーバーを統合します。
    このスクリプトは、ツールの取得、フィルタリング、LLM を使用したエージェントベースの推論を実行します。
    """ 
    
    import asyncio 
    from langchain_mcp_adapters.client import MultiServerMCPClient 
    from langchain_openai import ChatOpenAI 
    from langgraph.prebuilt import create_react_agent 
    from config import Config 
    
    async def main(): 
        # 1 つ以上のサーバー URL で MCP クライアントを初期化
        mcp_client = MultiServerMCPClient( 
            connections={ 
                "default": {  # お好きな名前でOKです
                    "transport": "streamable_http", 
                    "url": Config.MCP_BASE_URL, 
                    "headers": {"Authorization": f"Basic {Config.MCP_AUTH}"}, 
                } 
            } 
        ) 
    
        # サーバーによって公開されているリモート MCP ツールを読み込む
        all_mcp_tools = await mcp_client.get_tools() 
        print("検出された MCP ツール:", [tool.name for tool in all_mcp_tools]) 
    
        # ReAct スタイルのエージェントを作成して実行
        llm = ChatOpenAI( 
            model="gpt-4o",  
            temperature=0.2, 
            api_key="YOUR_OPEN_API_KEY"  # ここに OpenAI API キーを使用します(https://platform.openai.com/ で確認できます)
        ) 
    
        agent = create_react_agent(llm, all_mcp_tools) 
    
        user_prompt = "[rootadoname]1 で利用可能なテーブルはいくつありますか?"  # 必要に応じてプロンプトを変更してください
        print(f"
    ユーザープロンプト: {user_prompt}") 
    
        # エージェントに MCP ツールを使用するように求めるプロンプトを送信
        response = await agent.ainvoke( 
            {"messages": [{"role": "user", "content": (user_prompt),}]} 
        ) 
    
        # エージェントの最終応答を出力
        final_msg = response["messages"][-1].content 
        print("エージェントの最終応答:", final_msg) 
    
    if __name__ == "__main__": 
        asyncio.run(main()) 
    

ステップ 3:LangChain と LangGraph パッケージをインストールする

それでは、LangChain を CData Connect AI MCP と組み合わせて使用し、推論に OpenAI を統合するために必要なPython パッケージをインストールしていきましょう。

プロジェクトのターミナルで次のコマンドを実行してください。

 
pip install langchain-mcp-adapters langchain-openai langgraph 

ステップ 4:LangChain を使用して Databricks にプロンプトを送信する(MCP サーバー経由)

  1. インストールが完了したら、
    python langchain.py
    を実行してスクリプトを実行します
  2. スクリプトは MCP サーバーに接続し、接続されたデータをクエリするために利用可能な CData Connect AI MCP ツールを検出します
  3. プロンプトを入力します(例:「Databricks で利用可能なテーブルはいくつありますか?」)
  4. それに応じて、エージェントが結果を返します

CData Connect AI でビジネスシステムのデータ活用を今すぐスタート

いかがでしたか?LangChain から Databricks へのデータ接続が簡単に完了したのではないでしょうか。業務に使えそう、と感じてくださった方は、14 日間の無償トライアルで AI ツールからビジネスシステムへのリアルタイムデータ接続をぜひお試しください。

はじめる準備はできましたか?

CData Connect AI の詳細、または無料トライアルにお申し込みください:

無料トライアル お問い合わせ