CData Connect AI を使用してRelevance AI でリアルタイムの Databricks のデータにアクセスするエージェントを構築

Yazhini G
Yazhini G
Technical Marketing Engineer
CData Connect AI のリモートMCP サーバーを活用し、Relevance AI がインテリジェントなエージェントワークフロー内でDatabricks のデータにセキュアにアクセスしてアクションを実行できるようにします。

Relevance AI は、自然言語推論を活用した自律的なワークフローを組織が作成できるAI 自動化およびエージェント構築プラットフォームです。ユーザーは、API、データベース、サードパーティシステムと連携して日常のビジネスタスクやデータ操作を完了するエージェントを視覚的に設計できます。

Relevance AI を組み込みのMCP(Model Context Protocol)サーバーを介してCData Connect AI と統合することで、エージェントはリアルタイムでDatabricks のデータをクエリ、要約、操作できるようになります。この接続により、Relevance AI のインテリジェントなワークフローエンジンとCData Connect AI のガバナンスされたエンタープライズ接続がブリッジされ、すべてのクエリが手動でデータをエクスポートすることなく、承認されたソースに対してセキュアに実行されます。

この記事では、Connect AI で Databricks への接続を設定し、Relevance AI にCData MCP サーバーを登録し、リアルタイムのDatabricks のデータと連携するエージェントを構築する手順を説明します。

Databricks データ連携について

CData を使用すれば、Databricks のライブデータへのアクセスと統合がこれまでになく簡単になります。お客様は CData の接続機能を以下の目的で利用しています:

  • Runtime バージョン 9.1 - 13.X から Pro および Classic Databricks SQL バージョンまで、すべてのバージョンの Databricks にアクセスできます。
  • あらゆるホスティングソリューションとの互換性により、お好みの環境で Databricks を使用し続けることができます。
  • パーソナルアクセストークン、Azure サービスプリンシパル、Azure AD など、さまざまな方法で安全に認証できます。
  • Databricks ファイルシステム、Azure Blob ストレージ、AWS S3 ストレージを使用して Databricks にデータをアップロードできます。

多くのお客様が、さまざまなシステムから Databricks データレイクハウスにデータを移行するために CData のソリューションを使用していますが、ライブ接続ソリューションを使用して、データベースと Databricks 間の接続をフェデレートしているお客様も多数います。これらのお客様は、SQL Server リンクサーバーまたは Polybase を使用して、既存の RDBMS 内から Databricks へのライブアクセスを実現しています。

一般的な Databricks のユースケースと CData のソリューションがデータの問題解決にどのように役立つかについては、ブログをご覧ください:What is Databricks Used For? 6 Use Cases


はじめに


ステップ1:Relevance AI 用に Databricks への接続を設定

Relevance AI から Databricks への接続は、CData Connect AI のリモートMCP サーバーによって実現されます。Relevance AI からDatabricks のデータを操作するには、まずCData Connect AI で Databricks 接続を作成し設定します。

  1. Connect AI にログインして「Sources」をクリックし、 Add Connection をクリックします
  2. Add Connection パネルからDatabricks を選択します
  3. Databricks への接続に必要な認証プロパティを入力します。

    Databricks 接続プロパティの取得・設定方法

    Databricks クラスターに接続するには、以下のプロパティを設定します。

    • Database:Databricks データベース名。
    • Server:Databricks クラスターのサーバーのホスト名
    • HTTPPath:Databricks クラスターのHTTP パス。
    • Token:個人用アクセストークン。この値は、Databricks インスタンスのユーザー設定ページに移動してアクセストークンタブを選択することで取得できます。
    Databricks インスタンスで必要な値は、クラスターに移動して目的のクラスターを選択し、Advanced Options の下にあるJDBC/ODBC タブを選択することで見つけることができます。

    Databricks への認証

    CData は、次の認証スキームをサポートしています。

    • 個人用アクセストークン
    • Microsoft Entra ID(Azure AD)
    • Azure サービスプリンシパル
    • OAuthU2M
    • OAuthM2M

    個人用アクセストークン

    認証するには、次を設定します。

    • AuthSchemePersonalAccessToken
    • Token:Databricks サーバーへの接続に使用するトークン。Databricks インスタンスのユーザー設定ページに移動してアクセストークンタブを選択することで取得できます。

    その他の認証方法については、ヘルプドキュメント の「はじめに」セクションを参照してください。

  4. Save & Test をクリックします
  5. Permissions タブに移動し、ユーザーベースの権限を更新します

Personal Access Token の追加

Personal Access Token(PAT)は、Relevance AI からConnect AI への接続を認証するために使用されます。きめ細かなアクセス制御を維持するために、統合ごとに個別のPAT を作成することをお勧めします。

  1. Connect AI アプリの右上にある歯車アイコン()をクリックしてSettings を開きます
  2. Settings ページで「Access Tokens」セクションに移動し、 Create PAT をクリックします
  3. PAT にわかりやすい名前を付けてCreate をクリックします
  4. トークンが表示されたらコピーして安全に保存してください。再度表示されることはありません

Databricks 接続の設定とPAT の生成が完了したら、Relevance AI はCData MCP サーバーを介してDatabricks のデータに接続できるようになります。

ステップ2:Relevance AI で接続を設定

CData Connect AI のMCP エンドポイントと認証情報をRelevance AI に登録して、エージェントがConnect AI からリアルタイムデータを呼び出せるようにします。

  1. Relevance AI にサインインし、アカウントをお持ちでない場合は作成します
  2. サイドバーからAgents に移動し、New Agent をクリックします
  3. Build from scratch を選択し、エージェントに名前を付けます(例:CData MCP Server
  4. エージェントエディター内でAdvanced を選択し、MCP Server タブに切り替えます
  5. + Add Remote MCP Tools をクリックします
  6. 表示されるダイアログで、以下のようにフィールドを入力します:
    • URL: https://mcp.cloud.cdata.com/mcp
    • Label: 任意のカスタムラベル(例: cdata_mcp_server
    • Authentication: Custom headers を選択します
    • ヘッダーのkey:value ペアを追加します。メールアドレスとPAT をemail:PAT の形式で組み合わせ、その文字列をBase64 でエンコードし、先頭にBasic を付けます
      • Key: Authorization
      • Value: Basic base64(email:PAT)

Connect をクリックして接続を確立します。Relevance AI が資格情報を検証し、エージェントで使用するためにCData Connect AI MCP サーバーを登録します。

ステップ3:リアルタイムの Databricks のデータを使用してRelevance AI エージェントを構築・実行

  1. エージェントのRun タブに切り替えます
  2. タスクを入力します。例:「ServiceNow から最新の5件のインシデントをリストして」
  3. エージェントがMCP エンドポイント経由でConnect AI にクエリを実行し、Databricks のデータ からのリアルタイム結果を表示します

接続が完了すると、Relevance AI エージェントはCData Connect AI MCP サーバーを介して、リアルタイムのDatabricks のデータに対してクエリの発行、レコードの取得、AI 駆動のタスクの実行が可能になります。

CData Connect AI の入手

クラウドアプリケーションから300以上のSaaS、Big Data、NoSQL ソースにアクセスするために、CData Connect AI を今すぐお試しください!

はじめる準備はできましたか?

CData Connect AI の詳細、または無料トライアルにお申し込みください:

無料トライアル お問い合わせ