Amazon SageMaker Canvas から RDS 経由で Databricks のリアルタイムデータを活用
Amazon SageMaker Canvas は、コードを書かずに予測の生成、データの準備、モデルの構築ができるノーコード機械学習プラットフォームです。CData Connect AI と組み合わせることで、クラウド間でリアルタイムにDatabricks のデータにアクセスし、カスタム機械学習モデルの構築、顧客離反予測、テキスト生成、チャットボット開発など、さまざまな用途に活用できます。この記事では、RDS コネクタを使用して Amazon SageMaker Canvas から Connect AI に接続し、Databricks のデータを ML モデルのデプロイメントに統合する方法をご紹介します。
CData Connect AI は、Databricks 向けに純粋な SQL インターフェースをクラウド間で提供します。これにより、データをレプリケーションすることなく、Amazon SageMaker Canvas からDatabricks のデータに簡単に接続できます。Connect AI は Amazon SageMaker Canvas からは SQL Server データベースとまったく同じように見え、フィルタや JOIN などの SQL 操作をDatabricksに直接プッシュする最適化されたデータ処理により、サーバーサイド処理を活用してDatabricks のデータをすばやく取得します。
Databricks データ連携について
CData を使用すれば、Databricks のライブデータへのアクセスと統合がこれまでになく簡単になります。お客様は CData の接続機能を以下の目的で利用しています:
- Runtime バージョン 9.1 - 13.X から Pro および Classic Databricks SQL バージョンまで、すべてのバージョンの Databricks にアクセスできます。
- あらゆるホスティングソリューションとの互換性により、お好みの環境で Databricks を使用し続けることができます。
- パーソナルアクセストークン、Azure サービスプリンシパル、Azure AD など、さまざまな方法で安全に認証できます。
- Databricks ファイルシステム、Azure Blob ストレージ、AWS S3 ストレージを使用して Databricks にデータをアップロードできます。
多くのお客様が、さまざまなシステムから Databricks データレイクハウスにデータを移行するために CData のソリューションを使用していますが、ライブ接続ソリューションを使用して、データベースと Databricks 間の接続をフェデレートしているお客様も多数います。これらのお客様は、SQL Server リンクサーバーまたは Polybase を使用して、既存の RDBMS 内から Databricks へのライブアクセスを実現しています。
一般的な Databricks のユースケースと CData のソリューションがデータの問題解決にどのように役立つかについては、ブログをご覧ください:What is Databricks Used For? 6 Use Cases
はじめに
Databricks への接続を設定(Amazon SageMaker Canvas 向け)
Amazon SageMaker Canvas から Databricks への接続は、CData Connect AI を介して行います。それでは、Databricks のデータを Amazon SageMaker Canvas から利用できるようにするため、Databricks への接続を作成していきましょう。
- Connect AI にログインして「Sources」をクリック、次に「 Add Connection」をクリック
- 接続を追加パネルから「Databricks」を選択
-
Databricks に接続するために必要な認証プロパティを入力します。
Databricks 接続プロパティの取得・設定方法
Databricks クラスターに接続するには、以下のプロパティを設定します。
- Database:Databricks データベース名。
- Server:Databricks クラスターのサーバーのホスト名。
- HTTPPath:Databricks クラスターのHTTP パス。
- Token:個人用アクセストークン。この値は、Databricks インスタンスのユーザー設定ページに移動してアクセストークンタブを選択することで取得できます。
Databricks への認証
CData は、次の認証スキームをサポートしています。
- 個人用アクセストークン
- Microsoft Entra ID(Azure AD)
- Azure サービスプリンシパル
- OAuthU2M
- OAuthM2M
個人用アクセストークン
認証するには、次を設定します。
- AuthScheme:PersonalAccessToken。
- Token:Databricks サーバーへの接続に使用するトークン。Databricks インスタンスのユーザー設定ページに移動してアクセストークンタブを選択することで取得できます。
その他の認証方法については、ヘルプドキュメント の「はじめに」セクションを参照してください。
- 「Save & Test」をクリック
-
Databricks 接続の追加ページで「Permissions」タブに移動し、ユーザーベースの権限を更新します。
パーソナルアクセストークンを追加
REST API、OData API、または仮想 SQL Server を通じて Connect AI に接続する場合は、パーソナルアクセストークン(PAT)を使用して認証を行います。アクセス管理を細かく制御するため、サービスごとに個別の PAT を作成することをお勧めします。
- Connect AI アプリの右上にある歯車アイコン()をクリックして設定ページを開きます。
- 設定ページで「Access Tokens」セクションに移動し、「 Create PAT」をクリックします。
-
PAT に名前を付けて「Create」をクリックします。
- パーソナルアクセストークンは作成時にのみ表示されます。必ずコピーして、今後の利用のために安全に保管してください。
接続の設定と PAT の生成が完了したら、Amazon SageMaker Canvas からDatabricks のデータに接続する準備は完了です。
Amazon SageMaker Canvas から CData Connect AI に接続
CData Connect AI での接続設定が完了したら、RDS コネクタを使用してDatabricks のデータを Amazon SageMaker Canvas に統合していきましょう。
- Amazon SageMaker Canvas でドメインとユーザープロファイルを選択し、「Open Canvas」をクリックします。
- Canvas アプリケーションが開いたら、左側のパネルに移動して「My models」を選択します。
- My models 画面で「Create new model」をクリックします。
- Create new model ウィンドウでモデル名を入力し、Problem type を選択します。「Create」をクリックします。
- モデルバージョンが作成されたら、Select dataset タブで「Create dataset」をクリックします。
- Create a tabular dataset ウィンドウで「Dataset name」を入力し、「Create」をクリックします。
- 「Data Source」ドロップダウンをクリックして RDS コネクタを検索またはナビゲートし、「 Add Connection」をクリックします。
- Add a new RDS connection ウィンドウで、以下のプロパティを設定します。
- Connection Name: 任意の接続名
- Engine type を sqlserver-web に設定
- Port を 14333 に設定
- Address を tds.cdata.com に設定
- Username を Connect AI ユーザー(例: [email protected])に設定
- Password を上記ユーザーの PAT に設定
- Database name を Databricks 接続名(例: Databricks1)に設定
- 「Create connection」をクリックします。
Databricks を Amazon SageMaker Canvas に統合
RDS で Connect AI への接続が設定できたら、Databricks のデータを Amazon SageMaker Canvas のデータセットに統合していきましょう。
- Databricks のデータで作成した RDS のテーブル形式データセットで、検索バーまたは接続リストから Connect AI で設定した Databricks 接続を検索します。
- Databricks から使用したいテーブルを選択し、右側のキャンバスにドラッグ&ドロップします。
- 以下のように、Databricks 接続から任意の数のテーブルを結合してワークフローを作成できます。「Create dataset」をクリックします。
- データセットが作成されたら、「Select dataset」をクリックしてモデルを構築します。
- 分析を実行し、予測を生成してモデルをデプロイします。
これで、Amazon SageMaker からDatabricks のデータにリアルタイムでアクセスできるようになりました。カスタム ML モデルを構築し、ビジネスの予測インサイトを生成して、組織の成長に活用してください。
クラウドアプリケーションから Databricks への SQL アクセス
Amazon SageMaker Canvas からDatabricks のデータへのダイレクト接続が完成しました。データをレプリケーションすることなく、接続やデータセット、予測モデルをさらに追加してビジネスを推進できます。
300 以上の SaaS、ビッグデータ、NoSQL ソースにクラウドアプリケーションから直接リアルタイムアクセスするには、CData Connect AI をご覧ください。