Databricks(AWS)でDatabricks のデータを処理・分析
Databricks は、Apache Spark を通じたデータ処理機能を提供するクラウドベースのサービスです。CData JDBC Driver と組み合わせることで、Databricks を使用してリアルタイムDatabricks のデータに対してデータエンジニアリングとデータサイエンスを実行できます。この記事では、AWS でCData JDBC Driver をホストし、Databricks でリアルタイムDatabricks のデータに接続して処理する方法を説明します。
最適化されたデータ処理が組み込まれたCData JDBC Driver は、リアルタイムDatabricks のデータを扱う上で比類のないパフォーマンスを提供します。Databricks に複雑なSQL クエリを発行すると、ドライバーはフィルタや集計などのサポートされているSQL 操作をDatabricks に直接プッシュし、サポートされていない操作(主にSQL 関数やJOIN 操作)は組み込みSQL エンジンを利用してクライアント側で処理します。組み込みの動的メタデータクエリを使用すると、ネイティブデータ型を使ってDatabricks のデータを操作・分析できます。
Databricks データ連携について
CData を使用すれば、Databricks のライブデータへのアクセスと統合がこれまでになく簡単になります。お客様は CData の接続機能を以下の目的で利用しています:
- Runtime バージョン 9.1 - 13.X から Pro および Classic Databricks SQL バージョンまで、すべてのバージョンの Databricks にアクセスできます。
- あらゆるホスティングソリューションとの互換性により、お好みの環境で Databricks を使用し続けることができます。
- パーソナルアクセストークン、Azure サービスプリンシパル、Azure AD など、さまざまな方法で安全に認証できます。
- Databricks ファイルシステム、Azure Blob ストレージ、AWS S3 ストレージを使用して Databricks にデータをアップロードできます。
多くのお客様が、さまざまなシステムから Databricks データレイクハウスにデータを移行するために CData のソリューションを使用していますが、ライブ接続ソリューションを使用して、データベースと Databricks 間の接続をフェデレートしているお客様も多数います。これらのお客様は、SQL Server リンクサーバーまたは Polybase を使用して、既存の RDBMS 内から Databricks へのライブアクセスを実現しています。
一般的な Databricks のユースケースと CData のソリューションがデータの問題解決にどのように役立つかについては、ブログをご覧ください:What is Databricks Used For? 6 Use Cases
はじめに
CData JDBC Driver をDatabricks にインストール
Databricks でリアルタイムDatabricks のデータを操作するには、Databricks クラスターにドライバーをインストールします。
- Databricks の管理画面に移動し、対象のクラスターを選択します。
- Libraries タブで「Install New」をクリックします。
- Library Source として「Upload」を選択し、Library Type として「Jar」を選択します。
- インストール場所(通常はC:\Program Files\CData[product_name]\lib)からJDBC JAR ファイル(cdata.jdbc.databricks.jar)をアップロードします。
ノートブックでDatabricks のデータにアクセス:Python
JAR ファイルをインストールしたら、Databricks でリアルタイムDatabricks のデータを操作する準備が整いました。ワークスペースに新しいノートブックを作成します。ノートブックに名前を付け、言語としてPython を選択し(Scala も利用可能)、JDBC ドライバーをインストールしたクラスターを選択します。ノートブックが起動したら、接続を設定し、Databricks をクエリして、基本的なレポートを作成できます。
Databricks への接続を設定
JDBC Driver クラスを参照し、JDBC URL で使用する接続文字列を構築してDatabricks に接続します。また、JDBC URL でRTK プロパティを設定する必要があります(Beta ドライバーを使用している場合を除く)。このプロパティの設定方法については、インストールに含まれるライセンスファイルを参照してください。
ステップ1:接続情報
driver = "cdata.jdbc.databricks.DatabricksDriver" url = "jdbc:databricks:RTK=5246...;Server=127.0.0.1;HTTPPath=MyHTTPPath;User=MyUser;Token=MyToken;"
組み込みの接続文字列デザイナー
JDBC URL の作成をサポートするために、Databricks JDBC Driver に組み込まれている接続文字列デザイナーが使用できます。JAR ファイルをダブルクリックするか、コマンドラインからJAR ファイルを実行します。
java -jar cdata.jdbc.databricks.jar
接続プロパティを入力し、接続文字列をクリップボードにコピーします。
Databricks 接続プロパティの取得・設定方法
Databricks クラスターに接続するには、以下のプロパティを設定します。
- Database:Databricks データベース名。
- Server:Databricks クラスターのサーバーのホスト名。
- HTTPPath:Databricks クラスターのHTTP パス。
- Token:個人用アクセストークン。この値は、Databricks インスタンスのユーザー設定ページに移動してアクセストークンタブを選択することで取得できます。
Databricks への認証
CData は、次の認証スキームをサポートしています。
- 個人用アクセストークン
- Microsoft Entra ID(Azure AD)
- Azure サービスプリンシパル
- OAuthU2M
- OAuthM2M
個人用アクセストークン
認証するには、次を設定します。
- AuthScheme:PersonalAccessToken。
- Token:Databricks サーバーへの接続に使用するトークン。Databricks インスタンスのユーザー設定ページに移動してアクセストークンタブを選択することで取得できます。
その他の認証方法については、ヘルプドキュメント の「はじめに」セクションを参照してください。
Databricks のデータをロード
接続を設定したら、CData JDBC Driver と接続情報を使用して、Databricks のデータをDataFrame としてロードできます。
ステップ2:データの読み取り
remote_table = spark.read.format ( "jdbc" ) \ .option ( "driver" , driver) \ .option ( "url" , url) \ .option ( "dbtable" , "Customers") \ .load ()
Databricks のデータを表示
ロードしたDatabricks のデータをdisplay 関数を呼び出して確認します。
ステップ3:結果の確認
display (remote_table.select ("City"))
Databricks でDatabricks のデータを分析
Databricks SparkSQL でデータを処理するには、ロードしたデータをTemp View として登録します。
ステップ4:ビューまたはテーブルを作成
remote_table.createOrReplaceTempView ( "SAMPLE_VIEW" )
Temp View を作成したら、SparkSQL を使用してDatabricks のデータをレポート、ビジュアライゼーション、分析用に取得できます。
% sql SELECT City, CompanyName FROM SAMPLE_VIEW ORDER BY CompanyName DESC LIMIT 5
Databricks からのデータは、対象のノートブックでのみ利用可能です。他のユーザーと共有したい場合は、テーブルとして保存します。
remote_table.write.format ( "parquet" ) .saveAsTable ( "SAMPLE_TABLE" )
CData JDBC Driver for Databricks の30日間無償トライアルをダウンロードして、Databricks でリアルタイムDatabricks のデータの操作をはじめましょう。ご不明な点があれば、サポートチームにお問い合わせください。