CData Connect AI を使用して Dataiku と SAP SuccessFactors のデータ を統合

Yazhini G
Yazhini G
Technical Marketing Engineer
CData Connect AI のリモート MCP サーバーを活用して、Dataiku エージェントからリアルタイムのSAP SuccessFactors のデータにセキュアにクエリ・操作できるようにします。

Dataiku は、チームがガバナンスされた環境内で機械学習や生成 AI プロジェクトを設計、デプロイ、管理できるコラボレーティブなデータサイエンス・AI プラットフォームです。エージェントと GenAI フレームワークにより、カスタムワークフローとモデルオーケストレーションを通じてデータを分析、生成、操作できるインテリジェントエージェントを構築できます。

Dataiku を CData Connect AI の組み込み MCP(Model Context Protocol)サーバーと統合することで、これらのエージェントはリアルタイムのSAP SuccessFactors のデータにセキュアにアクセスできるようになります。この統合により、Dataiku のエージェント実行環境と CData のガバナンスされたエンタープライズ接続レイヤーが橋渡しされ、すべてのクエリや指示が手動エクスポートやステージングなしで、承認されたデータソースに対して安全に実行されます。

この記事では、Connect AI での SAP SuccessFactors 接続の設定、MCP サポートを含む Dataiku の Python コード環境の準備、そして Dataiku 内から直接リアルタイムのSAP SuccessFactors のデータにクエリ・操作できるエージェントの作成方法を説明します。

ステップ 1:Dataiku 用の SAP SuccessFactors 接続を設定

Dataiku から SAP SuccessFactors への接続は、CData Connect AI のリモート MCP サーバーによって実現されます。Dataiku からSAP SuccessFactors のデータを操作するには、まず CData Connect AI で SAP SuccessFactors 接続を作成・設定します。

  1. Connect AI にログインし、Sources をクリック、次に Add Connection をクリック
  2. Add Connection パネルから「SAP SuccessFactors」を選択
  3. SAP SuccessFactors に接続するために必要な認証プロパティを入力します。

    SAP SuccessFactorsへの接続

    それでは、SAP SuccessFactors に接続していきましょう。CData 製品は、デフォルトで有効になっているOData API を介してSAP SuccessFactors と通信します。追加の権限が必要な場合は、SAP サポートサイトをご確認ください。

    認証方法として、Azure AD 認証、SAP IAS 認証、OAuth 認証(推奨)、Basic 認証(非推奨)のいずれかを使用してSAP SuccessFactors に認証できます。

    必要な接続プロパティ

    選択したAuthScheme に関わらず、SAP SuccessFactors 環境を識別するために以下の接続プロパティを設定しましょう。

    • URL:SuccessFactors をホストするサーバーのURL
    • CompanyId:SAP SuccessFactors テナントに割り当てられた一意の識別子。この値はAPI 認証に必要で、組織固有のものです

    OAuth 認証

    SAP SuccessFactors では、OAuth 認証を2種類のグラント種別でサポートしています。

    • SAP SuccessFactors LMS インスタンスのクライアントグラント種別
    • SAML-2 Bearer グラント種別

    OAuth 認証を有効にするには、すべてのOAuth フローでカスタムOAuth アプリケーションを作成し、適切なプロパティを設定する必要があります。

    デスクトップアプリケーションでカスタムOAuth アプリケーションの資格情報を使用して認証するには、OAuth アクセストークンを取得し、更新する必要があります。これらを設定すると、接続の準備が整います。

    OAuth アクセストークンの取得およびリフレッシュ

    以下のプロパティを設定してください。

    • InitiateOAuthGETANDREFRESHOAuthAccessToken を自動的に取得およびリフレッシュするために使用します
    • OAuthClientId:アプリケーションの登録時に割り当てられたクライアントId
    • CallbackURL:カスタムOAuth アプリケーションの登録時に定義されたリダイレクトURI
    • OAuthClientSecret (クライアントグラント種別のみ):アプリケーションの登録時に割り当てられたクライアントシークレット
    • PrivateKey (SAML-2 Bearer グラント種別のみ):カスタムOAuth アプリケーションの作成時にダウンロードした秘密鍵証明書のパス、またはその証明書のbase64 でエンコードされた内容

    接続すると、CData 製品がデフォルトブラウザでSAP SuccessFactors のOAuth エンドポイントを開きます。ログインして、アプリケーションにアクセス許可を与えてください。

    アプリケーションにアクセス許可を与えると、CData 製品がOAuth プロセスを完了します。

    1. CData 製品がSAP SuccessFactors からアクセストークンを取得し、それを使ってデータをリクエストします
    2. OAuth 値はOAuthSettingsLocation で指定されたパスに保存されます。これらの値は接続間で永続化されます

    アクセストークンの期限が切れた際は、CData 製品が自動でアクセストークンをリフレッシュします。

    カスタムOAuth アプリケーションの作成やその他の認証方法については、 href="/kb/help/" target="_blank">ヘルプドキュメントの「はじめに」をご確認ください。

  4. Save & Test をクリック
  5. Permissions タブを開き、ユーザーベースの権限を設定

Personal Access Token を追加

Personal Access Token(PAT)は、Dataiku から Connect AI への接続を認証するために使用されます。きめ細かいアクセス制御を維持するため、統合ごとに個別の PAT を作成することをお勧めします

  1. Connect AI アプリの右上にある歯車アイコン()をクリックして Settings を開く
  2. Settings ページで Access Tokens セクションに移動し、 Create PAT をクリック
  3. PAT にわかりやすい名前を付けて Create をクリック
  4. トークンが表示されたらコピーして安全な場所に保存してください。再度表示されることはありません

SAP SuccessFactors 接続の設定と PAT の生成が完了したら、Dataiku から CData MCP Server 経由でSAP SuccessFactors のデータに接続できます。

ステップ 2:Dataiku とコード環境を準備

Dataiku の専用 Python コード環境が、MCP ベースの通信に必要なランタイムサポートを提供します。Dataiku エージェントを CData Connect AI に接続できるようにするには、Python 環境を作成し、エージェントとサーバー間の対話に必要な MCP クライアント依存関係をインストールします。

  1. Dataiku CloudCode Envs を開く
  2. Add a code env をクリックして DSS 設定ウィンドウを開く
  3. DSS で New Python env をクリック。名前を付け(例:MCP_Package)、Python 3.10 を選択(3.10 から 3.13 がサポートされています)
  4. Packages to install を開き、以下の pip パッケージを追加:
    • httpx
    • anyio
    • langchain-mcp-adapters
  5. Containerized execution を開き、Container runtime additions の下で Agent tool MCP servers support を選択
  6. Rebuild env をチェックし、Save and update をクリックしてパッケージをインストール
  7. Dataiku Cloud に戻り、Overview を開いて Open instance をクリック
  8. + New project をクリックして Blank project を選択。プロジェクト名を入力

ステップ 3:Dataiku エージェントを作成して MCP サーバーに接続

Dataiku エージェントは、Dataiku ワークスペースと CData MCP Server 間のブリッジとして機能します。この接続を有効にするには、カスタムコードベースエージェントを作成し、設定した Python 環境を割り当て、Connect AI の認証情報を埋め込んで、エージェントがリアルタイムのSAP SuccessFactors のデータにクエリ・操作できるようにします。

  1. Agents & GenAI Models に移動し、Create your first agent をクリック
  2. Code agent を選択し、名前を付け、Agent version で Asynchronous agent without streaming を選択
  3. 上部のタブから Settings を選択。Code env selectionDefault Python code env を作成した環境(例:MCP_Package)に設定
  4. Agent の Design タブに戻り、以下のコードを貼り付けます。EMAIL と PAT を自分の値に置き換えてください
  5. 
    
    import os
    import base64
    from typing import Dict, Any, List
    
    from dataiku.llm.python import BaseLLM
    from langchain_mcp_adapters.client import MultiServerMCPClient
    
    # ---------- Persistent MCP client (cached between calls) ----------
    _MCP_CLIENT = None
    
    def _get_mcp_client() -> MultiServerMCPClient:
        """Create (or reuse) a MultiServerMCPClient to CData Cloud MCP."""
        global _MCP_CLIENT
        if _MCP_CLIENT is not None:
            return _MCP_CLIENT
    
        # Set creds via env/project variables ideally
        EMAIL = os.getenv("CDATA_EMAIL", "YOUR_EMAIL")
        PAT   = os.getenv("CDATA_PAT",   "YOUR_PAT")
        BASE_URL = "https://mcp.cloud.cdata.com/mcp"
    
        if not EMAIL or PAT == "YOUR_PAT":
            raise ValueError("Set CDATA_EMAIL and CDATA_PAT as env variables or inline in the code.")
    
        token = base64.b64encode(f"{EMAIL}:{PAT}".encode()).decode()
        headers = {"Authorization": f"Basic {token}"}
    
        _MCP_CLIENT = MultiServerMCPClient(
            connections={
                "cdata": {
                    "transport": "streamable_http",
                    "url": BASE_URL,
                    "headers": headers,
                }
            }
        )
        return _MCP_CLIENT
    
    
    def _pick_tool(tools, names: List[str]):
        L = [n.lower() for n in names]
        return next((t for t in tools if t.name.lower() in L), None)
    
    
    async def _route(prompt: str) -> str:
        """
        Simple intent router:
          - 'list connections' / 'list catalogs' -> getCatalogs
          - 'sql: ...' or 'query: ...' -> queryData
          - otherwise -> help text
        """
        client = _get_mcp_client()
        tools = await client.get_tools()
    
        p = prompt.strip()
        low = p.lower()
    
        # 1) List connections (catalogs)
        if "list connections" in low or "list catalogs" in low:
            t = _pick_tool(tools, ["getCatalogs", "listCatalogs"])
            if not t:
                return "No 'getCatalogs' tool found on the MCP server."
            res = await t.ainvoke({})
            return str(res)[:4000]
    
        # 2) Run SQL
        if low.startswith("sql:") or low.startswith("query:"):
            sql = p.split(":", 1)[1].strip()
            t = _pick_tool(tools, ["queryData", "sqlQuery", "runQuery", "query"])
            if not t:
                return "No query-capable tool (queryData/sqlQuery) found on the MCP server."
            try:
                res = await t.ainvoke({"query": sql})
                return str(res)[:4000]
            except Exception as e:
                return f"Query failed: {e}"
    
        # 3) Help
        return (
            "Connected to CData MCP
    
    "
            "Say **'list connections'** to view available sources, or run a SQL like:
    "
            "  sql: SELECT * FROM [Salesforce1].[SYS].[Connections] LIMIT 5
    
    "
            "Remember to use bracket quoting for catalog/schema/table names."
        )
    
    
    class MyLLM(BaseLLM):
        async def aprocess(self, query: Dict[str, Any], settings: Dict[str, Any], trace: Any):
            # Extract last user message from the Quick Test payload
            prompt = ""
            try:
                prompt = (query.get("messages") or [])[-1].get("content", "")
            except Exception:
                prompt = ""
    
            try:
                reply = await _route(prompt)
            except Exception as e:
                reply = f"Error: {e}"
    
            # The template expects a dict with a 'text' key
            return {"text": reply}
    
    

    クイックテストを実行

    1. 右側のパネルで Quick Test を開く
    2. JSON コードを貼り付けて Run test をクリック
    3. 
      {
         "messages": [
            {
               "role": "user",
               "content": "list connections"
            }
         ],
         "context": {}
      }
      
      

    エージェントとチャット

    Chat タブに切り替えて、「List all connections」 のようなプロンプトを試してみてください。チャット出力に接続カタログの一覧が表示されます。

    CData Connect AI を入手

    AI エージェントから 300 以上の SaaS、ビッグデータ、NoSQL ソースにアクセスするには、CData Connect AI をお試しください。

はじめる準備はできましたか?

CData Connect AI の詳細、または無料トライアルにお申し込みください:

無料トライアル お問い合わせ