CData SSIS Components を使用して SharePoint のデータを Google BigQuery にマイグレーション

Cameron Leblanc
Cameron Leblanc
Technology Evangelist
CData SSIS Tasks for SharePoint と Google BigQuery を使用して、SharePoint のデータを Google BigQuery に簡単にプッシュできます。

Google BigQuery は、サーバーレスで高いスケーラビリティとコスト効率を備えたデータウェアハウスであり、組織がビッグデータを実用的なインサイトに変換できるよう設計されています。

CData SSIS Components は、SQL Server Integration Services を拡張し、さまざまなソースやデスティネーションからデータを簡単にインポート・エクスポートできるようにします。

この記事では、BigQuery へのエクスポート時のデータ型マッピングの考慮事項を確認し、CData SSIS Components for SharePoint と BigQuery を使用してSharePoint のデータを Google BigQuery にマイグレーションする方法を説明します。

データ型マッピング

Google BigQuery スキーマ CData スキーマ

STRING, GEOGRAPHY, JSON, INTERVAL

string

BYTES

binary

INTEGER

long

FLOAT

double

NUMERIC, BIGNUMERIC

decimal

BOOLEAN

bool

DATE

date

TIME

time

DATETIME, TIMESTAMP

datetime

STRUCT

下記参照

ARRAY

下記参照


STRUCT 型と ARRAY 型

Google BigQuery は、1 つの行に複合値を格納するための STRUCT と ARRAY という 2 種類の型をサポートしています。Google BigQuery の一部では、これらは RECORD 型および REPEATED 型としても知られています。

STRUCT は、名前でアクセスでき、異なる型を持つことができる固定サイズの値のグループです。コンポーネントは struct をフラット化し、ドット表記の名前でフィールドにアクセスできるようにします。これらのドット表記の名前は引用符で囲む必要があることに注意してください。

ARRAY は、同じ型の値で任意のサイズを持つことができるグループです。コンポーネントは配列を単一の複合値として扱い、JSON 集約として報告します。これらの型は組み合わせることができ、STRUCT 型が ARRAY フィールドを含んだり、ARRAY フィールドが STRUCT 値のリストになったりする場合があります。

特別な考慮事項

  • Google BigQuery には、DATETIME(タイムゾーンなし)と TIMESTAMP(タイムゾーンあり)の両方のデータ型があり、CData SSIS Components はローカルマシンのタイムゾーンに基づいて datetime にマッピングします。
  • Google BigQuery では、NUMERIC 型は 38 桁の精度と小数点以下最大 9 桁をサポートし、BIGNUMERIC 型は 76 桁の精度と小数点以下最大 38 桁をサポートします。CData SSIS Components for Google BigQuery は精度/スケールを自動検出しますが、Destination コンポーネントでは高精度カラムを手動でマッピングできます。
  • INTERVAL データ型:
    • コンポーネントは INTERVAL 型を文字列として表現します。クエリで INTERVAL 型が必要な場合は、BigQuery SQL の INTERVAL フォーマットを使用して INTERVAL を指定する必要があります:
      YEAR-MONTH DAY HOUR:MINUTE:SECOND.FRACTION
    • 例えば、「5 年と 11 ヶ月、マイナス 10 日と 3 時間と 2.5 秒」という値は正しいフォーマットでは以下のようになります:
      5-11 -10 -3:0:0.2.5

SharePoint データ連携について

CData を使用すれば、SharePoint のライブデータへのアクセスと統合がこれまでになく簡単になります。お客様は CData の接続機能を以下の目的で利用しています:

  • Windows SharePoint Services 3.0、Microsoft Office SharePoint Server 2007 以降、SharePoint Online を含む、幅広い SharePoint バージョンのデータにアクセスできます。
  • 非表示カラムとルックアップカラムのサポートにより、SharePoint のすべてにアクセスできます。
  • フォルダを再帰的にスキャンして、すべての SharePoint データのリレーショナルモデルを作成できます。
  • SQL ストアドプロシージャを使用して、ドキュメントや添付ファイルをアップロード・ダウンロードできます。

多くのお客様は、SharePoint データをデータベースやデータウェアハウスに統合するために CData ソリューションを活用していますが、Power BI、Tableau、Excel などのお気に入りのデータツールと SharePoint データを統合しているお客様もいます。

お客様が CData の SharePoint ソリューションで問題を解決している方法については、ブログをご覧ください:Drivers in Focus: Collaboration Tools


はじめに


前提条件

プロジェクトの作成とコンポーネントの追加

  1. Visual Studio を開き、新しい Integration Services プロジェクトを作成します。
  2. Control Flow 画面に新しい Data Flow Task を追加し、Data Flow Task を開きます。
  3. Data Flow Task に CData SharePoint Source コントロールと CData GoogleBigQuery Destination コントロールを追加します。

SharePoint ソースの設定

以下の手順に従って、SharePoint への接続に必要なプロパティを指定します。

  1. CData SharePoint Source をダブルクリックしてソースコンポーネントエディタを開き、新しい接続を追加します。
  2. CData SharePoint Connection Manager で接続プロパティを設定し、接続をテストして保存します。

    Microsoft SharePoint への接続

    URL の設定:

    Microsoft SharePoint では、2つの範囲でデータを操作できます。グローバルなMicrosoft SharePoint サイト全体を対象にするか、個々のサイトのみを対象にするかを選択できます。

    グローバルなMicrosoft SharePoint サイトですべてのリストおよびドキュメントを操作したい場合は、URL 接続プロパティをサイトコレクションURL に設定しましょう。以下のような形式です。

    https://teams.contoso.com

    個々のサイトのリストおよびドキュメントのみを扱いたい場合は、URL 接続プロパティを個々のサイトURL に設定してください。以下のような形式です。

    https://teams.contoso.com/TeamA

    続いて、お使いの環境に適した認証プロパティを設定していきましょう。詳細な設定手順については、 href="/kb/help/" target="_blank">ヘルプドキュメントの「はじめに」をご参照ください。

    Microsoft SharePoint Online

    SharePointEdition を"SharePoint Online" に設定し、User およびPassword にはSharePoint へのログオンで使用するクレデンシャル(例:Microsoft Online Services アカウントのクレデンシャル)を設定します。

    Microsoft SharePoint Online は様々なクラウドベースアーキテクチャをサポートしており、それぞれ異なる認証スキームが利用できます。

    • Microsoft Entra ID(Azure AD)
    • ADFS、Okta、OneLogin、またはPingFederate SSO ID プロバイダーを介したシングルサインオン(SSO)
    • Azure MSI
    • Azure パスワード
    • OAuthJWT
    • SharePointOAuth

    Microsoft SharePoint オンプレミス

    Microsoft SharePoint オンプレミスでは、多くのオンプレミス環境に対応した認証方式をサポートしています。

    • Windows(NTLM)
    • Kerberos
    • ADFS
    • 匿名アクセス

    まずSharePointEdition を"SharePoint On-Premises" に設定しましょう。

    Windows(NTLM)認証

    これは最も一般的な認証方式です。そのため、CData 製品ではNTLM をデフォルトとして使用するよう事前設定されています。Windows のUser およびPassword を設定するだけで接続できます。

  3. 接続を保存後、「Table or view」を選択し、Google BigQuery にエクスポートするテーブルまたはビューを選択して、CData SharePoint Source Editor を閉じます。

Google BigQuery デスティネーションの設定

SharePoint Source を設定したら、Google BigQuery 接続を設定してカラムをマッピングします。

  1. CData Google BigQuery Destination をダブルクリックしてデスティネーションコンポーネントエディタを開き、新しい接続を追加します。
  2. CData GoogleBigQuery Connection Manager で接続プロパティを設定し、接続をテストして保存します。
    • Google は OAuth 認証標準を使用しています。個々のユーザーに代わって Google API にアクセスするには、埋め込み資格情報を使用するか、独自の OAuth アプリを登録できます。 OAuth を使用すると、サービスアカウントを使用して Google Apps ドメイン内のユーザーに代わって接続することもできます。サービスアカウントで認証するには、アプリケーションを登録して OAuth JWT 値を取得します。 OAuth 値に加えて、DatasetId と ProjectId を指定します。OAuth の使用ガイドについては、ヘルプドキュメントの「Getting Started」章を参照してください。

    便利な接続プロパティ

    • QueryPassthrough: True に設定すると、クエリは Google BigQuery に直接渡されます。
    • ConvertDateTimetoGMT: True に設定すると、コンポーネントはローカルマシンの時刻ではなく、日時値を GMT に変換します。
    • FlattenObjects: デフォルトでは、コンポーネントは STRUCT カラムの各フィールドを独自のカラムとして報告し、STRUCT カラム自体は非表示にします。False に設定すると、トップレベルの STRUCT は展開されず、独自のカラムとして残ります。このカラムの値は JSON 集約として報告されます。
    • SupportCaseSensitiveTables: このプロパティを true に設定すると、同じ名前で大文字小文字が異なるテーブルは、すべてメタデータで報告されるように名前が変更されます。デフォルトでは、プロバイダーはテーブル名を大文字小文字を区別しないものとして扱うため、複数のテーブルが同じ名前で大文字小文字が異なる場合、メタデータでは 1 つだけが報告されます。
  3. 接続を保存後、Use a Table メニューでテーブルを選択し、Action メニューで Insert を選択します。
  4. Column Mappings タブで、入力カラムからデスティネーションカラムへのマッピングを設定します。

プロジェクトの実行

これでプロジェクトを実行できます。SSIS Task の実行が完了すると、SQL テーブルのデータが選択したテーブルにエクスポートされます。

はじめる準備はできましたか?

SharePoint SSIS Component の無料トライアルをダウンロードしてお試しください:

 ダウンロード

詳細:

SharePoint Icon SharePoint SSIS Components お問い合わせ

SSIS ソース元 & 接続先コンポーネントは、SQL Server SSIS のワークフロー内で簡単にSharePoint Server データにリアルタイム接続できるパワフルなツールです。

データフロー内のSharePoint コンポーネントを使ってSharePoint のLists、Contacts、Calendar、Links、Tasks、etc. を同期できます。データ同期、ローカルバックアップ、ワークフローの自動化などに最適!