CData Connect AI 経由でPostgreSQL インターフェースからリアルタイムの Snowflake のデータに接続
インターネット上には数多くのPostgreSQL クライアントがあります。PostgreSQL はデータアクセスのための一般的なインターフェースです。PostgreSQL をCData Connect AI と組み合わせることで、PostgreSQL からリアルタイムのSnowflake のデータにデータベースのようにアクセスできます。この記事では、Connect AI でSnowflake のデータに接続し、TDS foreign data wrapper(FDW)を使用してConnect AI とPostgreSQL 間の接続を確立するプロセスを説明します。
CData Connect AI は Snowflake 専用のSQL Server インターフェースを提供し、ネイティブでサポートされているデータベースにデータをレプリケートすることなく Snowflake のデータをクエリできます。最適化されたデータ処理を標準で使用し、CData Connect AI はサポートされているすべてのSQL 操作(フィルター、JOIN など)を Snowflake に直接プッシュし、サーバーサイド処理を活用して必要なSnowflake のデータを迅速に返します。
Snowflake データ連携について
CData は、Snowflake のライブデータへのアクセスと統合を簡素化します。お客様は CData の接続機能を以下の目的で活用しています:
- Snowflake データを迅速かつ効率的に読み書きできます。
- 指定された Warehouse、Database、Schema のメタデータを動的に取得できます。
- OAuth、OKTA、Azure AD、Azure マネージド サービス ID、PingFederate、秘密鍵など、さまざまな方法で認証できます。
多くの CData ユーザーは、CData ソリューションを使用して、お気に入りのツールやアプリケーションから Snowflake にアクセスし、さまざまなシステムからデータを Snowflake にレプリケートして、包括的なウェアハウジングと分析を行っています。
CData ソリューションとの Snowflake 統合についての詳細は、ブログをご覧ください:https://jp.cdata.com/blog/snowflake-integrations
はじめに
Connect AI で Snowflake に接続
CData Connect AI は、シンプルなポイント&クリック操作でデータソースに接続できるインターフェースを提供しています。
- Connect AI にログインして「Sources」をクリックし、 Add Connection をクリックします
- Add Connection パネルから「Snowflake」を選択します
-
Snowflake への接続に必要な認証プロパティを入力します。
それでは、Snowflake データベースに接続していきましょう。認証に加えて、以下の接続プロパティを設定します。
- Url:お使いのSnowflake URL を指定します。例:https://orgname-myaccount.snowflakecomputing.com
- Legacy URL を使用する場合:https://myaccount.region.snowflakecomputing.com
- ご自身のURL は以下のステップで確認できます。
- Snowflake UI の左下にあるユーザー名をクリックします
- Account ID にカーソルを合わせます
- Copy Account URL アイコンをクリックして、アカウントURL をコピーします
- Database(オプション):CData 製品によって公開されるテーブルとビューを、特定のSnowflake データベースのものに制限したい場合に設定します
- Schema(オプション):CData 製品によって公開されるテーブルとビューを、特定のSnowflake データベーススキーマのものに制限したい場合に設定します
Snowflakeへの認証
CData 製品では、Snowflake ユーザー認証、フェデレーション認証、およびSSL クライアント認証をサポートしています。認証するには、User とPassword を設定し、AuthScheme プロパティで認証方法を選択してください。
キーペア認証
ユーザーアカウントに定義されたプライベートキーを使用してセキュアなトークンを作成し、キーペア認証で接続することも可能です。この方法で接続するには、AuthScheme をPRIVATEKEY に設定し、以下の値を設定してください。
- User:認証に使用するユーザーアカウント
- PrivateKey:プライベートキーを含む.pem ファイルへのパスなど、ユーザーに使用されるプライベートキー
- PrivateKeyType:プライベートキーを含むキーストアの種類(PEMKEY_FILE、PFXFILE など)
- PrivateKeyPassword:指定されたプライベートキーのパスワード
その他の認証方法については、ヘルプドキュメントの「Snowflakeへの認証」セクションをご確認ください。
- Url:お使いのSnowflake URL を指定します。例:https://orgname-myaccount.snowflakecomputing.com
- Save & Test をクリックします
-
Add Snowflake Connection ページの「Permissions」タブに移動し、ユーザーベースの権限を更新します。
Personal Access Token の追加
REST API、OData API、またはVirtual SQL Server 経由でConnect AI に接続する場合、Personal Access Token(PAT)を使用してConnect AI への接続を認証します。アクセス管理の粒度を維持するために、サービスごとに個別のPAT を作成することをお勧めします。
- Connect AI アプリの右上にある歯車アイコン()をクリックして設定ページを開きます。
- Settings ページで「Access Tokens」セクションに移動し、 Create PAT をクリックします。
-
PAT に名前を付けて「Create」をクリックします。
- Personal Access Token は作成時にのみ表示されるため、必ずコピーして安全な場所に保存してください。
接続の設定とPAT の生成が完了したら、PostgreSQL からSnowflake のデータに接続する準備が整いました。
TDS Foreign Data Wrapper のビルド
Foreign Data Wrapper は、PostgreSQL を再コンパイルすることなく、PostgreSQL の拡張機能としてインストールできます。例として tds_fdw 拡張機能を使用します(https://github.com/tds-fdw/tds_fdw)。
- 以下のようにgit リポジトリをクローンしてビルドできます:
sudo apt-get install git git clone https://github.com/tds-fdw/tds_fdw.git cd tds_fdw make USE_PGXS=1 sudo make USE_PGXS=1 install
注意:複数のPostgreSQL バージョンがあり、デフォルト以外のバージョン用にビルドする場合は、まずpg_config のバイナリの場所を見つけてフルパスをメモし、make コマンドでUSE_PGXS=1 の後にPG_CONFIG=を追加します。 - インストールが完了したら、サーバーを起動します:
sudo service postgresql start
- 次に、Postgres データベースに入ります
psql -h localhost -U postgres -d postgres
注意:localhost の代わりにPostgreSQL がホストされているIP を指定することもできます。
PostgreSQL データベースとしてSnowflake のデータに接続し、データをクエリ!
拡張機能をインストールした後、以下の手順に従ってSnowflake のデータへのクエリを開始します:
- データベースにログインします。
- データベース用の拡張機能をロードします:
CREATE EXTENSION tds_fdw;
- Snowflake のデータ 用のサーバーオブジェクトを作成します:
CREATE SERVER "Snowflake1" FOREIGN DATA WRAPPER tds_fdw OPTIONS (servername'tds.cdata.com', port '14333', database 'Snowflake1');
- Connect AI アカウントのメールアドレスとPersonal Access Token を使用してユーザーマッピングを設定します:
CREATE USER MAPPING for postgres SERVER "Snowflake1" OPTIONS (username '[email protected]', password 'your_personal_access_token' );
- ローカルスキーマを作成します:
CREATE SCHEMA "Snowflake1";
- ローカルデータベースに外部テーブルを作成します:
#table_name 定義を使用: CREATE FOREIGN TABLE "Snowflake1".Products ( id varchar, ProductName varchar) SERVER "Snowflake1" OPTIONS(table_name 'Snowflake.Products', row_estimate_method 'showplan_all'); #またはschema_name とtable_name 定義を使用: CREATE FOREIGN TABLE "Snowflake1".Products ( id varchar, ProductName varchar) SERVER "Snowflake1" OPTIONS (schema_name 'Snowflake', table_name 'Products', row_estimate_method 'showplan_all'); #またはquery 定義を使用: CREATE FOREIGN TABLE "Snowflake1".Products ( id varchar, ProductName varchar) SERVER "Snowflake1" OPTIONS (query 'SELECT * FROM Snowflake.Products', row_estimate_method 'showplan_all'); #またはリモートカラム名を設定: CREATE FOREIGN TABLE "Snowflake1".Products ( id varchar, col2 varchar OPTIONS (column_name 'ProductName')) SERVER "Snowflake1" OPTIONS (schema_name 'Snowflake', table_name 'Products', row_estimate_method 'showplan_all');
- これで、Snowflake に対して読み取り/書き込みコマンドを実行できます:
SELECT id, ProductName FROM "Snowflake1".Products;
詳細情報と無償トライアル
これで、リアルタイムのSnowflake のデータからシンプルなクエリを作成できました。Snowflake(およびその他200以上のデータソース)への接続の詳細については、Connect AI ページをご覧ください。無償トライアルに登録して、今すぐPostgreSQL でリアルタイムのSnowflake のデータを活用してみてください。