Google Data Fusion で Spark に連携した ETL プロセスを作成

Jerod Johnson
Jerod Johnson
Director, Technology Evangelism
CData JDBC Driver を Google Data Fusion にロードし、Spark のデータ にリアルタイムでアクセスできる ETL プロセスを作成します。

Google Data Fusion を使用すると、セルフサービス型のデータ連携を行い、異なるデータソースを統合できます。CData JDBC Driver for Apache Spark をアップロードすることで、Google Data Fusion のパイプライン内から Spark のデータ にリアルタイムでアクセスできるようになります。CData JDBC Driver を使用すると、Spark のデータ を Google Data Fusion でネイティブにサポートされている任意のデータソースにパイプできますが、この記事では、Spark から Google BigQuery へデータをパイプする方法を説明します。

CData JDBC Driver for Apache Spark を Google Data Fusion にアップロード

CData JDBC Driver for Apache Spark を Google Data Fusion インスタンスにアップロードして、Spark のデータ にリアルタイムでアクセスしましょう。Google Data Fusion では JDBC ドライバーの命名規則に制限があるため、JAR ファイルを driver-version.jar という形式に合わせてコピーまたはリネームしてください。例:cdatasparksql-2020.jar

  1. Google Data Fusion インスタンスを開きます
  2. をクリックしてエンティティを追加し、ドライバーをアップロードします
  3. "Upload driver" タブで、リネームした JAR ファイルをドラッグまたは参照します。
  4. "Driver configuration" タブで以下を設定します:
    • Name: ドライバーの名前(cdata.jdbc.sparksql)を作成し、メモしておきます
    • Class name: JDBC クラス名を設定します:(cdata.jdbc.sparksql.SparkSQLDriver)
  5. "Finish" をクリックします

Google Data Fusion で Spark のデータ に接続

JDBC Driver をアップロードしたら、Google Data Fusion のパイプラインで Spark のデータ にリアルタイムでアクセスできます。

  1. Pipeline Studio に移動して、新しいパイプラインを作成します
  2. "Source" オプションから "Database" をクリックして、JDBC Driver 用のソースを追加します
  3. Database ソースの "Properties" をクリックしてプロパティを編集します

    NOTE:Google Data Fusion で JDBC Driver を使用するには、ライセンス(製品版またはトライアル)とランタイムキー(RTK)が必要です。ライセンス(またはトライアル)の取得については、CData までお問い合わせください。

    • Label を設定します
    • Reference Name を将来の参照用の値に設定します(例:cdata-sparksql)
    • Plugin Type を "jdbc" に設定します
    • Connection String を Spark の JDBC URL に設定します。例:

      jdbc:sparksql:RTK=5246...;Server=127.0.0.1;

      SparkSQL への接続

      SparkSQL への接続を確立するには以下を指定します。

      • Server:SparkSQL をホストするサーバーのホスト名またはIP アドレスに設定。
      • Port:SparkSQL インスタンスへの接続用のポートに設定。
      • TransportMode:SparkSQL サーバーとの通信に使用するトランスポートモード。有効な入力値は、BINARY およびHTTP です。デフォルトではBINARY が選択されます。
      • AuthScheme:使用される認証スキーム。有効な入力値はPLAIN、LDAP、NOSASL、およびKERBEROS です。デフォルトではPLAIN が選択されます。

      Databricks への接続

      Databricks クラスターに接続するには、以下の説明に従ってプロパティを設定します。Note:必要な値は、「クラスター」に移動して目的のクラスターを選択し、 「Advanced Options」の下にある「JDBC/ODBC」タブを選択することで、Databricks インスタンスで見つけることができます。

      • Server:Databricks クラスターのサーバーのホスト名に設定。
      • Port:443
      • TransportMode:HTTP
      • HTTPPath:Databricks クラスターのHTTP パスに設定。
      • UseSSL:True
      • AuthScheme:PLAIN
      • User:'token' に設定。
      • Password:パーソナルアクセストークンに設定(値は、Databricks インスタンスの「ユーザー設定」ページに移動して「アクセストークン」タブを選択することで取得できます)。

      ビルトイン接続文字列デザイナー

      JDBC URL の作成には、Spark JDBC Driver に組み込まれている接続文字列デザイナーを使用できます。JAR ファイルをダブルクリックするか、コマンドラインから JAR ファイルを実行してください。

            java -jar cdata.jdbc.sparksql.jar
            

      接続プロパティを入力し、接続文字列をクリップボードにコピーします。

    • Import Query を Spark から取得したいデータを抽出する SQL クエリに設定します。例:
      SELECT * FROM Customers
  4. "Sink" タブから、同期先シンクを追加します(この例では Google BigQuery を使用します)
  5. BigQuery シンクの "Properties" をクリックしてプロパティを編集します
    • Label を設定します
    • Reference Name を sparksql-bigquery のような値に設定します
    • Project ID を特定の Google BigQuery プロジェクト ID に設定します(またはデフォルトの "auto-detect" のままにします)
    • Dataset を特定の Google BigQuery データセットに設定します
    • Table を Spark のデータ を挿入するテーブル名に設定します

Source と Sink を設定すると、Spark のデータ を Google BigQuery にパイプする準備が整います。パイプラインを保存してデプロイしてください。パイプラインを実行すると、Google Data Fusion が Spark からリアルタイムデータをリクエストし、Google BigQuery にインポートします。

これはシンプルなパイプラインの例ですが、変換、分析、条件などを使用してより複雑な Spark パイプラインを作成できます。CData JDBC Driver for Apache Spark の 30日間の無償トライアルをダウンロードして、今すぐ Google Data Fusion で Spark のデータ をリアルタイムで活用しましょう。

はじめる準備はできましたか?

Apache Spark Driver の無料トライアルをダウンロードしてお試しください:

 ダウンロード

詳細:

Apache Spark Icon Apache Spark JDBC Driver お問い合わせ

Apache Spark 連携のパワフルなJava アプリケーションを素早く作成して配布。